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Schrödinger equation with potential −g/r2 exhibits a limit cycle, described in the literature in a 
broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the 
renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue 
problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer 
structure than the one we found in the literature. Namely, it directly yields an equation that determines 
the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in 
addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter 
in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values 
of g.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Eigenvalue problem for the one-particle Hamiltonian

H = �p 2

2m
− g

�r 2
, (1)

provides a well-known example of a singular Schrödinger equa-
tion. For positive and sufficiently large coupling constant g , the 
overwhelmingly attractive potential causes instability, which limits 
application of Eq. (1) in physics [1].

The situation is changed when one regularizes the potential and 
introduces corrections on the basis of demanding that predictions 
for observables do not depend on the regularization. As a result, 
the corrected interaction exhibits cyclic behavior as a function of 
the regularization cutoff parameter. The cycle is associated with an 
infinite set of bound states whose binding energies form a geomet-
ric sequence converging on zero [1–9].

Regularization of potential −g/r2 in the position representation 
is proposed in various ways [2,3,5,10]. For instance, Braaten and 
Phillips [5] cut off the potential at some small radius and they in-
troduce an additional potential that acts only in a spherical δ-shell 
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of an infinitesimally smaller radius. They solve the resulting s-wave 
eigenvalue problem and find that one can obtain cutoff indepen-
dent eigenvalues by making the coupling constant in the additional 
term a log-periodic function of the cutoff radius.

In the momentum representation, the regularization is formu-
lated differently. For example, in the space of s-wave states, Ham-
mer and Swingle [6] introduce an ultraviolet cutoff � that limits 
the particle momentum from above. They also add a counter po-
tential with a new coupling constant, H(�). They determine H(�)

as a function of � by demanding that the bound-state solution 
with zero binding energy does not depend on �. Knowing the 
function H(�), they find a differential equation that it satisfies. 
In higher partial waves, Long and van Kolck [8] discuss the poten-
tial −g/r2 with added contact terms, in the spirit of constructing 
effective theories. They arrive at cutoff-independent solutions for 
observables by specifying cycling coefficients in front of one con-
tact term per singular partial wave.

The approach quoted above has successfully amended Eq. (1)
with examples of regularization and corresponding correction 
terms that are justified a posteriori. The ultimate justification relies 
on the fact that different regularizations with different corrections 
lead to the same results for observables [11,12].

In this paper, the Hamiltonian of Eq. (1) is handled using the 
Wilsonian type of renormalization group procedure [13,14]. It is 
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the same type of procedure that originally produced the concept 
of a renormalization group limit cycle [15]. Instead of first cal-
culating observables in a regularized theory, guessing an ansatz 
for the correction term, and subsequently checking if such a the-
ory can give regularization independent results for the observables, 
we begin by calculating the required counterterm structure in the 
presence of regularization. This is done using a renormalization 
group transformation (RGT) of the Hamiltonian itself [13,14], i.e., 
prior to seeking solutions for observables. In the process, a family 
of finite, effective Hamiltonians is obtained, using the calculated 
counterterm structure. Solutions for observables are sought first in 
the resulting finite, scale-dependent effective theories that a priori
do not depend on regularization.

Our procedure leads to the limit cycle in terms of solutions to 
a simple renormalization group equation that evolves a Hamilto-
nian in the sense of Refs. [13,14]. The procedure also allows us to 
identify a whole range of renormalization group behaviors, which 
characterize the Hamiltonian of Eq. (1), in addition to the limit cy-
cle. These other behaviors, to the best of our knowledge, are not 
fully identified in the literature. Namely, we exhibit behaviors of 
the asymptotic-freedom, triviality and fixed-point type. The latter 
has been found before in the case of s-waves, using the func-
tional renormalization group technique that revealed a collision of 
two fixed points at the critical value of the s-wave coupling con-
stant [16]. We identify fixed points in all partial waves, including 
their behavior near the corresponding infinitely many critical val-
ues of the coupling constant. These behaviors appear in a pattern 
of interest for studies of scaling symmetry and its breakdown in 
complex theories, see below. Hence, the simplicity and familiarity 
of Eq. (1) are its assets rather than drawbacks. Further simplifica-
tion is taken advantage of in this paper by carrying out the RGT in 
the differential steps that are analogous to the discrete ones out-
lined in [17,18] on another example of a Hamiltonian with a limit 
cycle. The issue of dependence of effective theories on the magni-
tude of eigenvalues they aim to describe, is only briefly explained 
at the end of the paper.

Effective potentials of type 1/r2 were successfully employed in 
three-body dynamics, where a series of bound states generically 
appears, under the name of Efimov effect [19–22], whenever in 
the corresponding two-body dynamics the ratio of effective inter-
action range to scattering length is very small, ultimately requiring 
precise treatment when this ratio approaches zero [23]. It is worth 
pointing out that a potential of the type 1/r2 appears also in inter-
actions of a point charge with a dipole, causing violation of scaling 
symmetry [24,25]. The pattern of breaking scale invariance when 
the coupling constant g in Eq. (1) increases above a critical value 
is of special interest in many areas “from molecular to black-hole 
physics” [26], and in statistical mechanics [27,28]. In Ref. [10], the 
analogous pattern is found helpful in discussing theories that ex-
hibit the Berezinsky–Kosterlitz–Thouless phase transition. It is said 
to have many “parallels in the AdS/CFT correspondence” [29]. Pat-
terns of conformal symmetry breaking, including breaking of scale 
invariance in Hamiltonians [30], are invoked in light-front holo-
graphic description of hadrons [31] and in studies of conformal 
windows in technicolor gauge theories [32], the latter hoped to 
help in understanding the origin of the Standard Model [33,34]. 
Equation (1) is thus of broad interest as a rich but simple example 
of scaling-symmetry breaking and dimensional transmutation [35]
in the Wilsonian renormalization group procedure for Hamiltoni-
ans.

2. Renormalization group transformation

The renormalization group procedure for an incompletely de-
fined Hamiltonian, such as the one in Eq. (1), starts with regulariz-

ing it as an operator in a scheme called the “triangle of renormal-
ization” [36]. We introduce a cutoff � and thus define H� , from 
which we evaluate the equivalent effective Hamiltonians H� with 
cutoffs � � �. The RGT is involved in the process of this evalua-
tion.

In the limit � → ∞, we demand that matrix elements of H� in 
the subspace of states limited by finite � do not depend on �. This 
condition implies a large, if not infinite set of constraints. It allows 
us to determine the structure of counterterms needed in H� , up to 
finite alterations in their parameters. The computation of countert-
erms is done in a sequence of successive approximations, which 
improves the counterterms put in H� until all matrix elements in 
H� in the subspace of states limited by � become independent of 
�. This finite cutoff becomes a running parameter which enables 
one to identify how the theoretical description of observable phe-
nomena depends on the range of scales of degrees of freedom one 
uses for constructing solutions of the theory.

Once the counterterms in H� are such that all matrix elements 
of H� have well-defined limits for �/� → ∞, the eigenvalues of 
H� cannot depend on �. At the same time, eigenvalues of the 
effective Hamiltonians H� that are much smaller than � cannot 
depend on �, because this cutoff is merely a mathematical bound-
ary between the implicit degrees of freedom above and explicit 
degrees of freedom below �. Computation of H� that is equiva-
lent to H� is carried out in a sequence of discrete, or infinitesimal 
RGTs.

We carry out a sequence of the RGTs in momentum repre-
sentation. The stationary Schrödinger equation for Hamiltonian of 
Eq. (1),

�p2

2m
φ(�p) − g

4π

∫
d3q

φ(�q)

|�p − �q| = Eφ(�p) (2)

is written in terms of angular and radial variables, φ(�p) =∑
lm ψl(p)Ylm(�p), where p = |�p |. Taking advantage of rotational 

symmetry of Eq. (2), one obtains

p2ψl(p) +
∞∫

0

dq q2 Vl(p,q) ψl(q) = Eψl(p), (3)

where the eigenvalue E = 2mE , the potential

Vl(p,q) = − α

2l + 1

[
θ(p − q) q l

p l+1
+ θ(q − p) p l

q l+1

]
, (4)

the dimensionless coupling constant α = 2mg and the symbol 
θ denotes the Heaviside step function. Our regulated eigenvalue 
problem is defined by limiting the range of momenta p and q by 
a large cutoff parameter �.

Elimination of high momentum modes proceeds by infinitesi-
mal steps such as from � to � − d�,

p2ψl(p) +
�−d�∫

0

dq q2 Vl(p,q) ψl(q)

− α

2l + 1

p l

�l−1
ψl(�) d� = E ψl(p) . (5)

The value of ψl(�) is expressed in terms of values of ψl(p) with 
p < � − d� by setting p = � in Eq. (5). For eigenvalues E much 
smaller than �2, and neglecting terms that lead to quantities of 
order d�2 or smaller in Eq. (5), we have

ψl(�) = α

(2l + 1)�2

�−d�∫
0

dq q2 q l

�l+1
ψl(q) . (6)
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