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Combined HERA data on charm production in deep-inelastic scattering have previously been used to 
determine the charm-quark running mass mc(mc) in the MS renormalisation scheme. Here, the same data 
are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different 
scales to one-loop order, in the context of a next-to-leading order QCD analysis. The scale dependence of 
the mass is found to be consistent with QCD expectations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

The Standard Model of particle physics is based on Quantum 
Field Theory, which can provide predictions that rely on a pertur-
bative approach. In the MS renormalisation scheme of perturbative 
quantum chromodynamics (pQCD), the values of all basic QCD pa-
rameters depend on the scale μ at which they are evaluated. The 
most prominent example is the scale dependence, i.e. running, of 
the strong coupling constant αs , a by now well established prop-
erty of pQCD. It has, for example, been determined from measure-
ments of hadronic event shapes or jet production at e+e− colliders 
[1,2], and from measurements of jet production at HERA [3], Teva-
tron [4] and LHC [5].

The scale dependence of the mass mQ of a heavy quark in 
the MS scheme can likewise be evaluated perturbatively, using the 
renormalisation group equation

μ2 d

dμ2
mQ (μ) = mQ (μ)γmQ (αs) , (1)

which is governed by the mass anomalous dimension γmQ (αs)

known up to five-loop order [6] in perturbation theory. The run-
ning of the MS beauty-quark mass has already been successfully 
investigated from measurements at the LEP e+e− collider [7]. 
Heavy-flavour production in deep-inelastic scattering (DIS) at HERA 
is particularly sensitive to heavy-quark pair production at the kine-
matic threshold. A recent determination of the beauty-quark mass 
mb(mb) [8] by the ZEUS experiment at HERA was reinterpreted as 
a measurement of mb(μ = 2mb) using the solution of Eq. (1) at one 
loop. The comparison [9–11] of this result with the measurements 
from LEP and the PDG world average [12,13] shows consistency 
with the expected running of the beauty-quark mass.

An explicit investigation of the running of the charm-quark 
mass has not been performed yet. Combined HERA measurements 
[14] on charm production in deep-inelastic scattering have already 
been used for several determinations of the charm-quark mass 
mc(μ = mc) in the MS renormalisation scheme [14–18]. Fig. 1
shows the measured reduced cross section for charm production 
[14] as a function of the Bjorken variable xBj in 12 bins of pho-
ton virtuality Q 2 in the range 2.5 GeV2 < Q 2 < 2000 GeV2. In 
this paper, these data are used to investigate the running of the 
charm-quark mass with the same treatment of the uncertainties of 
the combination as in Ref. [14]. The fixed flavour number scheme 
(FFNS) is used at next-to-leading order (NLO) with n f = 3 active 
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flavours. This scheme gives a very good description of the charm 
data [14,19], as shown in Fig. 1. Calculations of next-to-next-to-
leading order corrections with massive coefficient functions [18,
19] have not yet been completed, and are therefore not used in 
this paper.

2. Principle of the mc(μ) determination

The theoretical reduced cross section for charm production is 
obtained from a convolution of charm-production matrix elements 
with appropriate parton density functions (PDFs). The latter are 
obtained from inclusive DIS cross sections, which include a charm 
contribution. Thus both, matrix elements and PDFs, depend on 
the value of the charm-quark mass. The scale dependence of the 
charm-quark mass is evaluated by subdividing the charm cross-
section data [14] into several subsets corresponding to different 
individual scales, as indicated by different rows in Fig. 1. In con-
trast, in the evaluation of the PDFs, data spanning a large scale 
range such as the inclusive HERA DIS data [20,21] must be used 
in order to get significant PDF constraints. A subdivision into in-
dividual scale ranges is thus not possible for the PDF determina-
tion. On the other hand, it has been established that, apart from 
the strong constraint which the charm measurements impose on 
the charm-quark mass [14], their influence on a combined PDF 
fit of both inclusive and charm data is small [21]. Therefore, the 
PDFs extracted from inclusive DIS can be used for investigations 
of charm-quark properties, provided that the same charm-quark 
mass is used throughout, recognising that thereby some correlation 
between the mass and PDF extractions is induced. The influence 
of this correlation on the determination of the charm-quark mass 
running is minimised as described in section 4.

To obtain the charm-quark mass at different scales, the charm 
data are subdivided into six kinematic intervals according to the 
virtuality of the exchanged photon. Each measurement in a given 
range in Q 2, as listed in Table 1 and shown in Fig. 1, is performed 
with charm data originating from collisions at a typical scale of 
μ =

√
Q 2 + 4m2

c . The actual scale used for each interval is defined 
according to

logμ =
〈
log

(√
Q 2 + 4m2

c

)〉
, (2)

where the brackets indicate the logarithmic average of the consid-
ered range. The resulting value for each Q 2 range is also listed in 
Table 1.

Technically, a value of mc(mc) is extracted separately from a fit 
to each interval. The value of mc(mc) is obtained assuming the run-
ning of both αs and mc as predicted by QCD. To that end, Eq. (1) is 
solved using the one-loop dependence on the scale μ, as relevant 
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