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Using non-extensive statistical mechanics, the Bekenstein–Hawking area law is obtained from microstates 
of black holes in loop quantum gravity, for arbitrary real positive values of the Barbero–Immirzi 
parameter (γ ). The arbitrariness of γ is encoded in the strength of the “bias” created in the horizon 
microstates through the coupling with the quantum geometric fields exterior to the horizon. An 
experimental determination of γ will fix this coupling, leaving out the macroscopic area of the black 
hole to be the only free quantity of the theory.
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1. Introduction

Loop quantum gravity (LQG) provides us with an estimate of 
the microstates of a black hole with given classical area (A), al-
beit at the kinematical level, which leads to a precise computation 
of its entropy [6,7]. The whole procedure is completed in two 
steps. Step 1: One deals with the field dynamics on the horizon 
to unravel the nature of the Hilbert space, hence the microstates, 
associated with the same. Step 2: Having the estimate of the mi-
crostates at hand, one applies the statistical mechanics to calculate 
the entropy (S).

The calculation yields S = (λ0/γ )A, where γ is known as the 
Barbero–Immirzi parameter [9–11], λ0 is a numerical constant re-
sulting from the underlying statistical mechanics. Then, demanding 
that S be given by the Bekenstein–Hawking area law (BHAL) i.e. 
A/4 [4,5], the value of γ is suitably fixed. Now, the parameter γ
represents a one-parameter family of canonical transformation of 
the canonical variables of the classical theory i.e. for every value 
of γ the classical equations of motion of general relativity are 
valid. And, in the quantum theory γ represents a quantization 
ambiguity of the theory like the θ -parameter of quantum chromo-
dynamics. For every real and positive1 value of γ there is a valid 
quantum theory, but they are unitarily inequivalent. In principle, if 
the derivation of the black hole entropy is correct, then the BHAL 
should follow for all real and positive values of γ . Hence, the ne-
cessity of choosing γ by hand just for the sake of obtaining the 
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1 γ should be real and positive in the quantum theory because it appears as a 

multiplicative constant in the area spectrum of the black hole [6].

BHAL is considered as a drawback of this approach of black hole 
entropy calculation [12]. It is suggested that one should obtain the 
S = A/4 for arbitrary γ . Hence, a physical explanation behind the 
tuning of γ and obtaining the BHAL for arbitrary γ , both will be 
value additions to the concerned literature. We achieve these goals 
by introducing a statistical mechanics or rather definition of en-
tropy other than the one, namely Boltzmann entropy, used in the 
standard literature to calculate black hole entropy from LQG. So, let 
us provide the physical motivation behind doing that on the first 
place.

2. Motivation

The physical motivation behind changing the standard defini-
tion of entropy comes from an observation regarding the two steps 
involved in the black hole entropy calculation in LQG.

Step 1 consists of the exploration of the quantum field dynam-
ics on the horizon. Classically, it has been shown for the case of 
Schwarzschild black hole that the field equations on the horizon 
can be derived from the action of a CS theory coupled to an exter-
nal source [16]

SC S = k

4π

∫
εabc

(
AI

a∂b AI
c + 1

3
ε I J K AI

a A J
b AK

c

)

+
∫

J Ia AI
a (1)

where AI
a is the CS gauge field, J Ia is the external source that is 

dual to the bulk soldering form both with respect to the internal 
indices and the spacetime indices; I, J , K represent the internal 
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gauge index and a, b, c represent the spacetime indices. The cou-
pling with the external source represents the coupling between 
the horizon and the external bulk. In the quantum theory these 
sources represent point-like quantum geometric excitations on the 
horizon [6]. The Hilbert space associated with the black hole hori-
zon is that of a Chern–Simons (CS) theory coupled to these point 
like sources [7]. It is this field theoretic view-point that originally 
led to the estimate of the full microstate counting of the horizon 
from the dimension of the Hilbert space of CS theory by Kaul and 
Majumdar [7], using the machineries of topological quantum field 
theory from Witten’s work [13] and Verlinde’s formula from con-
formal field theory [27].

Step 2 begins with the imposition of a statistical mechanics. The 
black hole entropy calculation in LQG is based on the well-known 
Shannon entropy formula2

S = −
�∑

i=1

pi ln pi (2)

where pi is the probability of the i-th microstate and � is the to-
tal number of microstates of the system under consideration. Then 
considering that all the possible microstates can occur, a priori, 
with equal probability, one uses pi = 1/� for all i in eq. (2) to 
arrive at the formula

S = ln�. (3)

Since the estimate of this � is now known from the knowledge of 
the Hilbert space, the rest is just a mathematical procedure that 
leads to S = (λ0/γ )A.

Now, one can easily make the observation that in Step 2, the 
computation of the entropy from the horizon microstates using 
eq. (2) inherently considers that the microstates are unbiased. This 
is possible only if these states were completely unaffected by any 
interaction with some external fields. On the other hand, in Step 1, 
we can see that the microstates of the horizon are described by a 
quantum CS theory coupled to point-like sources from bulk quan-
tum geometry. There is a gravitational coupling or interaction be-
tween the horizon and the bulk. Hence, it seems quite logical to 
introduce some different statistical mechanics or rather an entropy 
formula more generalized than eq. (2) to take into account the ef-
fect of the coupling between the horizon and the bulk as a bias in 
the microstates. Now, the question is how should the microstates 
be biased. The answer has two physical views:

i) From the statistical mechanical viewpoint, the bias should be 
such that the entropy calculation from LQG leads to the BHAL.

ii) From the field theoretic viewpoint, the bias should be such 
that it increases with the strength of the coupling of the horizon 
microstates with the bulk geometry.

In this work we show that these two viewpoints complement 
each other quite naturally if we introduce a generalization of the 
Shannon entropy (henceforth to be called as q-entropy) to incor-
porate the effect of a bias in the microstates, use it to calculate 
the black hole entropy and demand it to yield the BHAL. As a con-
sequence, we obtain the BHAL from the black hole microstates in 
LQG for arbitrary real positive values of γ . Nevertheless, at the end 
γ should have a fixed value that has to be determined by exper-
imental means. Once we are able to do so, the parameter q will 
become a function of A which is physically well justified because 
of the following reason. The coupling strength between the horizon 
and the bulk is dependent on A as k = A/4πγ . Since q represents 
the effect of the bias created in the horizon microstates due to this 
coupling, it should also depend on A.

2 We shall consider the Boltzmann constant to be unity.

3. The q-entropy

Originally, the idea behind the introduction of the notion of 
q-entropy was to incorporate, at the statistical mechanical level, 
the effect of a bias3 in the probabilities of the microstates of the 
underlying quantum mechanical system [1] (also, see page 43 of 
[2]). The parameter q is called entropic index. In general we have 
0 < pi < 1. Hence, pq

i > pi for q < 1 and pq
i < pi for q > 1. This 

implies q < 1 relatively enhances the rare events whose probabil-
ities are close to zero and q > 1 relatively enhances the frequent 
events whose probabilities are close to unity. Intrigued by this fact, 
the q-entropy was postulated by Tsallis [1], which is given by

Sq = (1 − ∑�
i=1 pq

i )

(q − 1)
, (4)

The parameter q is real and in the limit q → 1 one recovers eq. (2). 
To mention, the related branch of statistical mechanics is known 
as non-extensive statistical mechanics (NESM)4 due to its salient 
features [2]. For equal probability we have pi = 1/� for all i. In 
this case eq. (4) reduces to

Sq = lnq � (5)

where lnq x = (1 − x1−q)/(q − 1) is called q-logarithm. The
q-entropy for a spin sequence ( j1, · · · , jN) can be calculated by 
putting �( j1, · · · , jN) = ∏N

l=1(2 jl + 1) in eq. (5). The expression 
comes out to be

Sq( j1, · · · , jN) = lnq

N∏
l=1

(2 jl + 1) =
[∏N

l=1(2 jl + 1)
]1−q − 1

(1 − q)
(6)

If we consider j1 = · · · = jN = s (say), then eq. (6) reduces to the 
following form:

S(s)
q := Sq(Nnumber of spin s)

= [(1 + 2s)(1−q)N − 1]
(1 − q)

(7)

which was derived in [3]. This is the equation which we shall im-
plement to calculate black hole entropy.

4. Black hole microstates in LQG

Now, let us briefly discuss the essential structures of the quan-
tum geometry of black holes [6,7]. The quantum geometry of a 
cross-section of a black hole horizon in LQG is described by a topo-
logical two-sphere with defects, usually called punctures, carrying 
‘spin’5 quantum numbers endowed by the edges of the spin net-
work that represent the bulk quantum geometry [6]. Quantum area 
of the black hole with spin quantum numbers j1, · · · , jN on N
punctures is given by Aqu = 8πγ

∑N
l=1

√
jl( jl + 1) and the num-

ber of microstates is given by

�( j1, · · · , jN) =
N∏

l=1

(2 jl + 1). (8)

3 The exact nature of bias in a quantum system can only come through the study 
of its dynamics. q-entropy is a way to incorporate that effect at the statistical me-
chanical level. This is the reason to put the word ‘bias’ within quotes in the abstract.

4 The nomenclature ‘non-extensive’ is slightly misleading (see page 44 of [2]). 
However, we use it here as this branch of statistical mechanics is well known by 
this name.

5 These ‘spin’ quantum numbers are not to be confused with particle spins. For 
an elaborate discussion see [14].
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