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We discuss in detail the spatial distribution of angular momentum inside the nucleon. We show that 
the discrepancies between different definitions originate from terms that integrate to zero. Even though 
these terms can safely be dropped at the integrated level, they have to be taken into account when 
discussing distributions. Using the scalar diquark model, we illustrate our results and, for the first time, 
check explicitly that the equivalence between kinetic and canonical orbital angular momentum persists 
at the level of distributions, as expected in a system without gauge degrees of freedom.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding how the spin of the nucleon originates from the 
spin and orbital motion of its constituents is one of the current 
key questions in hadronic physics. While this problem may seem 
rather straightforward in the context of ordinary quantum me-
chanics, it becomes quite challenging in the context of hadronic 
physics, where one has to include relativistic, gauge-symmetry and 
non-perturbative aspects. One of the main conceptual issues is that 
the decomposition of the nucleon spin is not unique [1–3]. This in-
trinsic ambiguity is sometimes considered as a sign indicating that 
the question is not physical. It actually reflects the fact that any 
decomposition necessarily relies on how one defines the degrees 
of freedom. The problem remains physical as long as the various 
contributions can in principle be accessed by experiments.

Ji has shown that the (kinetic) total angular momentum of 
quarks and gluons can be expressed in terms of generalized par-
ton distributions (GPDs) [4]. This triggered an intense experimental 
program since GPDs can be extracted from exclusive processes 
like deeply virtual Compton scattering and hard meson exclu-
sive electroproduction [5–7]. Interestingly, the connection between 
GPDs and angular momentum has been clearly established only 
at the level of integrated quantities over all space. As shown by 
Burkardt [8,9], GPDs contain information about the spatial distri-
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bution of quarks and gluons inside the nucleon. It is therefore 
conceivable that GPDs contain also the information about the spa-
tial distribution of angular momentum. The problem now is to 
determine how this information is precisely encoded.

Polyakov provided the first attempt to answer this ques-
tion [10], but he required the nucleon to be infinitely massive, 
so as to avoid relativistic corrections. The infinite mass assump-
tion can actually be relaxed, provided that one works within the 
light-front formalism, as sketched in the review [1]. Recently, Ad-
hikari and Burkardt compared different definitions of the angular 
momentum distribution and reached the conclusion that none of 
them agree. They attributed some of the discrepancies to miss-
ing total divergence terms, as it had been pointed out earlier in 
Refs. [1,3].

The purpose of the present paper is to revisit the work of 
Polyakov, discuss in more detail the alternative approach based on 
the light-front formalism, and identify all the missing terms that 
hinder the proper comparison of the various definitions of angular 
momentum.

The rest of the paper is organized as follows. In Section 2, we 
recall the connection between the energy–momentum tensor and 
angular momentum. We stress in particular that, unlike in General 
Relativity, the energy–momentum tensor is generally not symmet-
ric in Particle Physics, owing to the presence of a spin density. 
In Section 3, we derive three-dimensional distributions of angular 
momentum in the Breit frame. We show that by projecting these 
distributions onto a two-dimensional plane, they can be considered 
in the more general class of elastic frames. In Section 4, we discuss 
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the distributions in the light-front formalism and observe that they 
coincide (for the longitudinal component of angular momentum) 
with the two-dimensional distributions in the elastic frame. We il-
lustrate our results within the scalar diquark model in Section 5
and, for the first time, check explicitly that kinetic and canonical 
orbital angular momentum coincide at the level of distributions in 
absence of gauge bosons. Finally, in Section 6 we summarize our 
findings and draw our conclusions.

2. Energy–momentum and generalized angular momentum 
tensors

In field theory, the conserved current associated with the in-
variance of the theory under Lorentz transformations, known as 
generalized angular momentum tensor, can be written in general 
as the sum of two contributions

Jμαβ(x) = Lμαβ(x) + Sμαβ(x) . (1)

Each one of these tensors is antisymmetric under α ↔ β . The first 
contribution reads

Lμαβ(x) = xαT μβ(x) − xβ T μα(x) , (2)

where T μν(x) is the Energy–Momentum Tensor (EMT) density as-
sociated with the system and accounts for the fact that the fields 
are affected by Lorentz transformations owing to their dependence 
on space–time points. The second contribution Sμαβ(x) accounts 
for the fact that fields have in general many components, which 
can also be affected by Lorentz transformations.

The three generators of rotations are obtained when α, β = i, j
are spatial components. In this case, Eq. (1) simply indicates that 
the total Angular Momentum (AM) is the sum of Orbital Angular 
Momentum (OAM) and spin

J = L + S , (3)

with J i = 1
2 ε i jk

∫
d3r J 0 jk , likewise for Li and Si .

2.1. Belinfante-improved tensors

The energy–momentum tensor obtained by following the pro-
cedure in Noether’s theorem is referred to as the canonical EMT, 
and is in general neither gauge invariant nor symmetric. Belinfante 
and Rosenfeld [11–13] proposed to add a so-called superpotential 
term to the definition of both the energy–momentum and general-
ized angular momentum tensors, defining the Belinfante-improved 
tensors as

T μν
Bel (x) = T μν(x) + ∂λGλμν(x), (4)

Jμαβ

Bel (x) = Jμαβ(x) + ∂λ

[
xαGλμβ(x) − xβ Gλμα(x)

]
, (5)

where the superpotential Gλμν is given by the combination

Gλμν(x) = 1

2

[
Sλμν(x) + Sμνλ(x) + Sνμλ(x)

] = −Gμλν(x) . (6)

The effect of such a term is to modify the definition of the lo-
cal density without changing the total charge. The Belinfante-
improved tensors (4)–(5) are conserved and usually turn out to 
be gauge invariant. Moreover, the particular choice (6) allows us to 
write the total AM in a pure orbital form

Jμαβ

Bel (x) = xα T μβ

Bel (x) − xβ T μα
Bel (x). (7)

Since the new tensors are conserved, it follows from this expres-
sion that the Belinfante-improved EMT is symmetric.

2.2. Kinetic tensors

As discussed in Refs. [1,14], the requirement of a symmetric 
EMT is usually motivated by General Relativity. In that context, the 
notion of spin is not accounted for from the beginning, and it is 
natural to consider AM as purely orbital. From a Particle Physics 
perspective, however, one naturally includes a spin contribution to 
the total AM as in Eq. (1). It then follows from the conservation 
of both T μν(x) and Jμαβ(x) that the EMT is in general asymmet-
ric, the antisymmetric part being given by the divergence of the 
density of spin

T [αβ](x) = −∂μSμαβ(x), (8)

where a[μbν] = aμbν − aνbμ . We see the Belinfante-improved ten-
sors as effective densities, where the effects of spin are mim-
icked by an obscure new contribution to momentum. Interest-
ingly, recent developments in optics also seem to demote the 
Belinfante-improved expressions from their status as fundamental 
densities [15].

Instead of the Belinfante-improved tensors, Ji [4] proposed to 
use in the context of QCD the kinetic EMT

T μν
kin (x) = T μν

kin,q(x) + T μν
kin,g(x), (9)

where the gauge-invariant quark and gluon contributions are given 
by [1,14]

T μν
kin,q(x) = 1

2
ψ(x)γ μi

←→
D νψ(x) , (10)

T μν
kin,g(x) = −2 Tr

[
Gμλ(x)Gν

λ(x)
]

+ 1

2
gμν Tr[Gρσ (x)Gρσ (x)] , (11)

with 
←→
D μ = ←→

∂ μ − 2ig Aμ and 
←→
∂ μ = −→

∂ μ − ←−
∂ μ , and the field-

strength tensor Gμν(x) = ∂μ Aν(x) − ∂ν Aμ(x) − ig
[

Aμ(x), Aν(x)
]
. 

The kinetic generalized AM tensor reads

Jμαβ

kin (x) = Lμαβ

kin,q(x) + Sμαβ
q (x) + Jμαβ

kin,g(x) , (12)

with

Lμαβ

kin,q(x) = xα T μβ

kin,q(x) − xβ T μα
kin,q(x) , (13)

Sμαβ
q (x) = 1

2
εμαβλ ψ(x)γλγ5ψ(x) , (14)

Jμαβ

kin,g(x) = xα T μβ

kin,g(x) − xβ T μα
kin,g(x) , (15)

and the convention ε0123 = +1. Contrary to the quark total AM, the 
gluon total AM cannot be split into orbital and spin contributions, 
which are at the same time gauge-invariant and local [16,17]. The 
kinetic and Belinfante-improved tensors in QCD are related as fol-
lows

T μν
kin,q(x) = T μν

Bel,q(x) − 1

2
∂λ Sλμν

q (x) , (16)

Lμαβ

kin,q(x) + Sμαβ
q (x) = Jμαβ

Bel,q(x)

− 1

2
∂λ

[
xα Sλμβ

q (x) − xβ Sλμα
q (x)

]
, (17)

the gluon contributions being the same in both cases, T μν
kin,g(x) =

T μν
Bel,g(x) and Jμαβ

kin,g(x) = Jμαβ

Bel,g(x). Using the conservation of the to-

tal AM Jμαβ

kin and the symmetry of T μν
kin,g(x), one can relate the 

antisymmetric part of the quark kinetic EMT to the quark spin di-
vergence

T [αβ]
kin,q(x) = −∂μSμαβ

q (x), (18)



Download English Version:

https://daneshyari.com/en/article/8187281

Download Persian Version:

https://daneshyari.com/article/8187281

Daneshyari.com

https://daneshyari.com/en/article/8187281
https://daneshyari.com/article/8187281
https://daneshyari.com

