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The momentum density, n(k) of interacting many-body Fermionic systems is studied (for k > kF ) using 
examples of several well-known two-body interaction models. It is shown that n(k) can be approximated 
by a zero-range model for momenta k less than about 0.1/re , where re the effective range. If the 
scattering length is large and one includes the effects of a fixed value of re �= 0, n(k) is almost universal 
for momenta k up to about 2/re . However, n(k) can not be approximated by a zero-range model for 
momenta k greater than about 1/(ar2

e )1/3, where a is the scattering length, and if one wishes to maintain 
a sum rule that relates the energy of a two component Fermi-gas to an integral involving the density. 
We also show that the short separation distance, s, behavior of the pair density varies as s6.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Interacting many-body Fermionic systems are copious in na-
ture, with examples occurring in astrophysics, nuclear physics, con-
densed matter physics, and most recently in atomic systems. The 
development of trapping, cooling and magnetic resonance tech-
niques for ultracold atoms allows the strength of the two-body 
interaction to be controlled experimentally [1–3]. At low relative 
energies this strength is characterized by the scattering length, a, 
which can be much, much larger than the range of the two-body 
interactions, R .

Such systems are of interest to understanding the nucleon–
nucleon interaction, which is characterized at low energies by scat-
tering lengths of magnitude much larger than the effective range. 
Indeed, the limit of a → ∞, R → 0, defined as the unitary limit, 
has been used as a benchmark problem for nuclear many-body 
physics. See for example, G.F Bertsch in Ref. [4] and for example [5,
6].

If a/R approaches infinity, the system is expected to have uni-
versal properties that are determined only by the scattering length. 
Tan [7–9] derived universal relations between diverse properties of 
any arbitrary system consisting of fermions in two spin states with 
a large scattering length. These relations include the coefficient of 
the 1/k4 tail of the momentum distribution [7], a decomposition of 
the energy into terms that insensitive to short distances [7], an ex-
pression for the local pair density [7], and various other properties 
of interacting many fermion systems [8–12]. Tan’s derivations start 
with the assumption that the interaction between constituents is 
a zero-range pseudopotential. Brataan and Platter [13] confirmed 
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these relations using a zero-range interaction, renormalized by cut-
ting off the intermediate momentum integrals at high values of the 
momentum. But the range of interaction is never 0 for any physical 
system even though the ratio R/a can be made exceedingly.

The aim of the present epistle is to explore the consequences of 
the non-zero range of interaction. We study how the effects of the 
non-zero value of the effective range influence the relative two-
fermion wave function of the interacting two-bodies. The square of 
the momentum–space wave function, φ̃(k) determines the shape 
of the system’s momentum distribution, n(k) = φ̃2(k) for k > kF , 
the Fermi momentum. Recent studies that examine the non-zero 
nature of the effective range include [14–16]. Ours focuses on ex-
hibiting the most relevant features of the two-body system.

We note that the universal relations all involve a property of 
the system that depends on the contact density, C(R), which is 
the local density of interacting pairs. Its integral over volume is 
denoted the contact, C [7], said to be a measure of the number of 
atom pairs with large (but not too large) relative momentum [17]. 
Recent works that apply the contact formalism to nuclear physics 
include Refs. [18–21].

At low relative energies the s-wave scattering phase shift δ can 
be expressed in terms of the effective range expansion:

k cot δ = −1

a
+ 1

2
rek2 + · · · , (1)

where k is the relative momentum (h̄2/m is taken as unity by con-
vention), a is the scattering length and re is the effective range. The 
effective range is expected to be of the order of range of the two-
body interactions that govern the system, but a can be much larger 
in magnitude. The present analysis is concerned with cases for 
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which a > 0. If a � re > 0, the S-matrix element e2iδ(k) has a pole 
on the positive imaginary axis. This pole corresponds to the energy 
of a bound state of very small binding energy, B = 1/a2 + re

a3 + · · · , 
in units with h̄2/m = 1, with m as twice the reduced mass of the 
interacting pair.

With a zero range interaction, the resulting wave function is 
simply φ0(r) = u0(r)/r = √

2/(4πa) exp (−r/a)/r, with the mo-
mentum space version, φ̃0(k) = √

8πaa/(k2a2 + 1), and n0 = φ̃2
0 . 

This function is the source of the claimed 1/k4 behavior of the 
density. The range of validity of these expressions is said [7,17] to 
be

1/a � k � 1/re. (2)

If re is taken to 0, then the upper limit would be infinite.
But re �= 0 for all physical systems, so that other momentum 

scales may enter. For example, consider the effective range expan-
sion of Eq. (1). In the large a limit, the first term is very small. Thus 
the second term can be as large as or much larger than the second 
term for relatively small values of k. For example, if k =

√
2

are
, the 

second term of Eq. (1) provides a 100% correction to the first term. 
An effect of that size cannot be ignored. The calculations will show 
that other momentum scales smaller than 1/re are important.

We study the influence of the non-zero range of the interaction 
as manifest by the difference between n(k) and n0(k). The physics 
of the interior must matter because, (∇2 + 1

a2 )e−r/a/r = −4πδ(r), 
so that the function e−r/a/r is not a solution of the Schroedinger 
equation in the usual sense. The region with r ≤ re matters, re can-
not be set to 0, and the range of validity of the 1/k4 behavior must 
be limited.

Our approach is to analyze four simple available models of 
the interaction that have the same non-zero effective range, and 
then to draw some general conclusions. Starting with an attractive, 
square-well, (S), potential of depth V 0 and range R is useful. The 
bound state wave function is given by

φS(r) = N S

r

[ sin Kr

sin K R
θ(R − r) + e−(r−R)/aθ(r − R)

]
, (3)

where N S is a normalization factor, and K = √
V 0 − B . For very 

large scattering lengths K R is slightly larger than π/2, and the 
effective range re is very close to R , the range of the interaction. 
The momentum space wave function is the Fourier transform:

φ̃S(k) = N̄ S

(
sin(kR)

ak + cos(kR)
)

(
K 2 − k2

) (
1 + a2k2

) . (4)

Another simple model is the Hulthein wave function, (H). The 
bound state wave function is given by

φH (r) =
√

β(β + α)

β − α

√
2α

4π

1

r
(e−αr − e−βr), (5)

with β �> α, B = α2. In the large a/re limit, α = 1/a. The mo-
mentum space wave function is given by

φ̃H (k) = 2
√

2π

√
αβ(α + β)3 1

α2 + k2

1

β2 + k2
. (6)

The surface delta (S D) function potential V (r) ∝ δ(r − R) is also 
easily analyzed. The coordinate space wave function is given by

φS D(r) = N S D

r

( sinh(r/a)

sinh(R/a)
θ(R − r) + e−(r−R)/aθ(r − R)

)
, (7)

Fig. 1. (Color online.) Comparison of rφS (r) (red) solid, rφH (r) (blue) dashed, and 
rφ0(r) (black) dot-dashed, rφS D (r) (black) solid, and rφE (r) (black) dashed for a/R =
10, 000. Dimensionless units are used (see text).

if B = 1/a2. The momentum space wave function is given by

φ̃S D(k) = Ñ S D
1

1 + (ka)2

sin(kR)

kR
. (8)

The exponential potential (E), V (r) = −V 0E e−μr provides an-
other well-studied example. A bound state wave function is given 
by

rφE(r) = NE J2σ/μ(2
√

V 0E/μ e−μr/2), (9)

with V 0 > 0, and the value of σ determined by the condition 
J2σ/μ(2

√
2V 0E/μ) = 0, B = −σ 2, and 1/σ = a in the large scat-

tering length limit. A useful form of the momentum–space wave 
function is obtained by using the power-series expansion for the 
Bessel function. The large scattering length result is given by

φ̃E(k) = ÑE

∞∑
j=0

(
V 0E

μ2 ) j+1/(aμ) ×

(−1) j

j!	( j + 1 + 2/(μa))

1

k2 + (1/a + μ j)2
. (10)

This function can be seen as a generalization of the Hulthein wave 
function.

Five coordinate space wave functions (0, S, H, S D, E) are com-
pared in Fig. 1. As noted The effective range is chosen to be unity 
in the natural length unit of the system. The examples shown here 
use the very large ratio for a/R = 10000 to ensure that any non-
universal features do not arise from an insufficiently large scatter-
ing length. The values V 0E = 18.73886, μ = 3.6 are used to obtain 
same values of a, re as for the other potentials. The effective range 
is chosen to be unity in the natural length unit of the system. If the 
binding energy is very small, the effective range can be computed 
using the bound state wave function. The relevant expression is 
(for B = −1/a2)

re = 2
∫

dr(e−2r/a − u2
E R(r)), (11)

where uE R(r) = rφ(r) normalized so that its asymptotic form is 
e−r/a . This expression is taken from the usual effective range ex-
pansion [22], but using k = i/a: the energy is taken to approach 
0 from negative values. Any differences from the approach using 
positive energy are accounted for by higher order terms in the ef-
fective range expansion, which are significant for small values of k. 
For the square well, R ≈ 1. For the Hulthein wave function one 
finds:
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