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Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investi-
gate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. 
In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass 
densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small 
black holes, we draw a comparative analysis between the first-order corrected and original thermody-
namical quantities. We also examine the stability and bound points of such black holes under effect of 
leading-order corrections.
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1. Overview and motivation

According to AdS/CFT duality, the Einstein general relativity in 
the bulk space–time corresponds to a gauge theory living on the 
boundary with a large N (number of colors) and large ’t Hooft 
coupling [1]. Since the coupling constants in the gravity side relate 
to central charges in the gauge theory, therefore Einstein gravity 
has limited number of dual CFTs, in particular only those CFTs 
which have equal central charges, as Einstein gravity does not 
have enough free parameters. The presence of various higher-order 
derivatives in AdS gravity corresponds to new couplings among op-
erators in the dual CFT. One well-known example of higher deriva-
tives gravity theories is Gauss–Bonnet gravity. The Gauss–Bonnet 
gravity involves only one quadratic coupling term and therefore 
the corresponding range of dual theory is still limited. In order 
to improve this limitation of holographic studies to the classes of 
CFTs, one has to introduce the new higher order curvature terms, 
at least curvature-cubed terms, into gravity. One may achieve such 
curvature-cubed interactions by adding the cubic term in Lovelock 
gravity [2], but can not be very helpful as such term is topological 
in nature and becomes significant only in very high dimensions.

Recently, a new toy model for gravitation action has been pro-
posed which contains not only the Gauss–Bonnet term but also a 
curvature-cubed interaction [3,4]. This is a quasitopological grav-
ity model as the cubic terms do not have a topological origin 
like Lovelock gravity but contribute dynamically to the evolution 
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of fields in the bulk. This quasitopological gravity theory is en-
dowed with two important properties. First, the equations of mo-
tion are generically of fourth order in derivatives of the metric 
which reduces to second order for spherically symmetric space-
times, and second there exist the exact black hole solutions [4]. 
The holographic discussions for these black hole solutions with 
some recipes of AdS/CFT duality have been given in [5]. The ba-
sic thermodynamics of quasitopological Reissner-Nordström black 
holes are studied in Ref. [6]. Recently, the surface term of qua-
sitopological gravity for space–time with flat boundary is intro-
duced and the thermodynamic properties of these solutions have 
been investigated by using the relation between on-shell action 
and Gibbs free energy [7].

An important discovery that black holes behave as thermody-
namic objects had affected our understanding of gravity theory and 
its relationship to quantum field theory considerably. Bekenstein 
and Hawking were first who proposed that black holes radiate 
as black bodies with characteristic entropy related to the area of 
the horizon [8]. In present scenario, it is more or less certain that 
black holes much larger than the Planck scale have entropy pro-
portional to its horizon area [8–12]. So, this poses an interesting 
question that what could be the leading-order corrections when 
one reduces the size of the black holes. To answer this question, 
several attempts have been made. For instance, using a corrected 
version of the asymptotic Cardy formula for BTZ, string theoretic 
and all other black holes, whose microscopic degrees of freedom 
are described by an underlying CFT [13], the leading-order correc-
tions have found logarithmic in nature. In fact, the consideration 
of matter fields in black hole backgrounds also yields logarithmic 
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correction to the black holes entropy at the leading order [14]. The 
leading-order correction to black holes entropy is also logarithmic 
by considering string-black hole correspondence [15,16] and using 
Rademacher expansion of the partition function [17]. Furthermore, 
Das et al. in Ref. [19] showed that the leading-order corrections to 
the entropy of any thermodynamic system due to small statistical 
fluctuations around equilibrium are always logarithmic.

The study of leading-order correction to the black holes ther-
modynamics is a subject of current interests. In this direction, re-
cently, the effects of quantum corrections on thermodynamics and 
stability of Gödel black hole [20], Schwarzschild–Beltrami–de Sit-
ter black hole [21] and massive black hole in AdS space [22] have 
been studied. The corrected thermodynamics of a dilatonic black 
hole has also been discussed [23] which meets the same universal 
form of correction term. In another work, the corrected thermody-
namics of a black hole is also studied from the partition function 
points of view [24]. The quantum gravity effects on the Hořava–
Lifshitz black hole thermodynamics are analyzed and their stability 
is also discussed [25]. Similar investigation in case of the modified 
Hayward black hole is also made, where it has been found that 
correction term reduces the pressure and internal energy of the 
Hayward black hole [26]. We try to extend such study to the case 
of quasitopological black holes.

In this paper, we consider a charged quasitopological model 
which exhibits black hole solutions and discuss the effects of 
leading-order correction on thermodynamics which becomes sig-
nificant for small size of the black holes. First, we compute the 
leading-order correction to the entropy of charged quasitopolog-
ical black hole and plot a graph to make a comparative analysis 
between corrected and uncorrected entropy densities for smaller 
black holes. Here, we find that for (negative-)positive correction 
parameter (α) there exists a (positive-)negative peak for the cor-
rected entropy density at sufficiently small black holes. The cor-
rected entropy density becomes negative valued for the positive 
correction parameter, which is not physical and therefore can be 
forbidden. We see that two critical points exist for the entropy 
density. The correction term affects significantly the entropy den-
sities in between these critical points. Furthermore, we derive the 
first-order corrected Gibbs free energy density and discuss the ef-
fects of correction terms. We observe that the correction terms 
with negative correction parameter make Gibbs free energy density 
(more-)less negative valued for the (smaller-)larger black holes. 
However, the correction terms with positive correction parameter 
make Gibbs free energy density more positive valued for the black 
holes with smaller horizon radius. For the larger values of charge 
and AdS radius, the deviation of corrected Gibbs free energy den-
sity with their original value becomes less. We also calculated the 
corrected expression for the total charge of the quasitopological 
black holes which coincides with their original expression in limit 
α → 0. Moreover, we evaluate the first-order corrected expression 
for the mass density of this black hole. We find that a critical point 
exists for total mass density below which corrected terms with the 
positive correction parameter shows opposite behavior. We also 
check the stability and bound point of black holes by calculating 
specific heat at constant chemical potential and plot with respect 
to horizon radius. We find that the phase transition does not oc-
cur due to the correction term with positive correction parameter 
and black holes are in stable state. The correction term with nega-
tive parameter causes instability for such black holes. Furthermore, 
in the same fashion, we investigate the effects of thermal fluc-
tuation on the thermodynamics of charged quasitopological black 
holes endowed with global rotation.

The paper is organized as follows. In section 2, we derive the 
corrected expression for entropy density due to the thermal fluc-
tuations when the size of the black holes is reduced to the Planck 

scale. In section 3, we discuss the effects of quantum corrections 
due to thermal fluctuations on the thermodynamics of charged qu-
asitopological black holes. Within this section, we study the influ-
ence of leading-order correction on stability of such black holes. In 
section 4, we consider a charged topological black holes endowed 
with global rotation and discuss the effects of thermal fluctua-
tions on the thermodynamics of it. We also study the stability 
and bound points of charged rotating quasitopological black holes 
under the influence of thermal fluctuations. We summarize our re-
sults with concluding remarks in the last section 5.

2. Thermodynamics under (quantum) thermal instability: 
Preliminaries

In this section, we review the corrections to thermodynamic 
entropy density of the quasitopological black holes when small sta-
ble fluctuations around equilibrium are taken into account. In this 
connection, one may assume that the system of quasitopological 
black holes is characterized by the canonical ensemble. In order 
to begin the analysis, let us first define the density of states with 
fixed energy as [27,28]

ρ(E) = 1

2π i

c+i∞∫
c−i∞

eS(β)dβ. (1)

Here S(β) refers to the exact entropy density which is not just its 
value at equilibrium and depends on temperature T = 1/β explic-
itly. The exact entropy density corresponds to the sum of entropy 
densities of subsystems of the thermodynamical system, which are 
small enough to be considered in equilibrium. In order to solve the 
complex integral (1), we utilize the method of steepest descent 
around the saddle point β0(= 1/T H ) such that 

(
∂S(β)

∂β

)
β=β0

= 0. 

We assume that the quasitopological black hole is in equilibrium 
at Hawking temperature T H . Now, the Taylor expansion of exact 
entropy density around the saddle point β = β0 yields

S(β) = S0 + 1

2
(β − β0)

2
(

∂2S(β)

∂β2

)
β=β0

+ (higher order terms),

(2)

where S0 = S(β0) refers the leading-order entropy density. Now, 
by plugging this S(β) (2) into (1), and solving integral by choosing 
c = β0 for positive 

(
∂2S(β)

∂β2

)
β=β0

leads to [19]

ρ(E) = eS0√
2π

(
∂2S(β)

∂β2

)
β=β0

. (3)

The logarithm of the above density of states yields the corrected 
microcanonical entropy density at equilibrium (obtained by incor-
porating small fluctuations around thermal equilibrium)

S = S0 − 1

2
log

(
∂2S(β)

∂β2

)
β=β0

+ (sub-leading terms). (4)

By considering the most general form of the exact entropy density, 
S(β), the form of 

(
∂2S(β)

∂β2

)
β=β0

can be determined. The generic 

expression for leading-order correction to Bekenstein–Hawking for-
mula is calculated by [19,18]

S = S0 + α ln(S0T 2
H ), (5)

where α is a (constant) correction parameter. One should note that 
we considered a general correction parameter α because this is not 
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