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We first examine the scaling argument for a renormalization-group (RG) analysis applied to a system 
subject to the dimensional reduction in strong magnetic fields, and discuss the fact that a four-Fermi 
operator of the low-energy excitations is marginal irrespective of the strength of the coupling constant in 
underlying theories. We then construct a scale-dependent effective four-Fermi interaction as a result of 
screened photon exchanges at weak coupling, and establish the RG method appropriately including the 
screening effect, in which the RG evolution from ultraviolet to infrared scales is separated into two stages 
by the screening-mass scale. Based on a precise agreement between the dynamical mass gaps obtained 
from the solutions of the RG and Schwinger–Dyson equations, we discuss an equivalence between these 
two approaches. Focusing on QED and Nambu–Jona-Lasinio model, we clarify how the properties of the 
interactions manifest themselves in the mass gap, and point out an importance of respecting the intrinsic 
energy-scale dependences in underlying theories for the determination of the mass gap. These studies are 
expected to be useful for a diagnosis of the magnetic catalysis in QCD.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Strong magnetic fields confine charged fermions in the low-
est Landau levels (LLLs), and they enjoy the properties of the 
(1 + 1)-dimensional chiral fermions with the dispersion relation 
[eB = (0, 0, eB), eB > 0]:
ε

R/L
LLL = ±pz . (1)

Intuitively, this is a consequence of the formation of the small 
cyclotron orbit with the radius ∼ 1/|eB|1/2 and the residual free 
motion along the field. It turned out that this dimensional reduc-
tion gives rise to rich physics phenomena. Especially, the magnetic 
catalysis of the chiral symmetry breaking and the chiral magnetic ef-
fect have been addressed by many authors (see, e.g., Refs. [1,2] and 
Refs. [3–6] for reviews).

The clear statement on the physical mechanism of the magnetic 
catalysis was due to Gusynin, Miransky, and Shovkovy in terms of 
a simple four-Fermi interaction [7]. By solving the gap equation of 
the NJL model, they found a mass gap
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mdyn = √
eB exp

(
− π

ρLLLGNJL

)
, (2)

where ρLLL and GNJL are the density of states in the LLL and a 
dimensionful coupling constant of the four-Fermi interaction, re-
spectively. Their core observation is seen in the similarity between 
the mass gap and the energy gap of superconductivity which is 
given by � ∼ ωD exp[−c′/(ρFG ′)] with ωD and ρF being the De-
bye frequency and the density of states near the Fermi surface, 
respectively. Also, G ′ and c′ are a coupling constant and a posi-
tive number, respectively. In fact, this similarity is originated from 
the dimensional reduction in the low-energy domains of the both 
theories, i.e., in the LLL and in the vicinity of the Fermi surface.

We can clearly see the consequence of the dimensional reduc-
tion by focusing on QED in the weak coupling regime. From the 
rainbow approximation of the Schwinger–Dyson (SD) equation, the 
mass gap was obtained as

mdyn � √
eB exp

(
−π

2

√
π

α

)
, (3)

with an unscreened photon propagator in the early studies [8–10], 
and also

mdyn � √
2eB α1/3 exp

{
− π

α log(Cπ/α)

}
, (4)
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with a screened photon propagator [11,12]. Here, α = e2/4π and 
C is a certain constant of order one. The constant was analyti-
cally obtained as C = 1 when the momentum dependence of mdyn
is neglected. The authors of Refs. [11,12] observed that the gap 
equation always has a nontrivial solution irrespective of the size of the 
coupling constant, indicating that the strong magnetic fields cause 
the dynamical symmetry breaking without support of any other 
nonperturbative dynamics. This reminds us of the well-known fact 
that any weak attractive interaction causes superconductivity.

Our main assertion in this Letter is that all these aspects of the 
magnetic catalysis can be understood with the Wilsonian renor-
malization group (RG) analysis. We will show that the emergence 
of the dynamical mass gap is informed from the RG flow for the 
effective four-Fermi operator that goes into the Landau pole. Bear-
ing it in mind that four-Fermi operators are irrelevant in ordinary 
(3 + 1)-dimensional systems, we will clearly see from the RG point 
of view that the magnetic catalysis of the dynamical symmetry 
breaking is intimately related to the dimensional reduction. Our 
approach shares the philosophy with the analysis of (color) super-
conductivity by the RG method [13–20].

Our ultimate goal is to consistently understand the enhance-
ment of the chiral symmetry breaking at zero or low temperature, 
and the inverse magnetic catalysis near the chiral phase transition 
temperature in QCD. There has been a discrepancy between the 
estimates of the chiral condensate from the lattice QCD simula-
tion and typical model calculations [21]. For the magnetic catalysis 
and the inverse catalysis to be compatible with each other, it ap-
peared to be important to explain a mechanism which makes the 
dynamical mass gap stay as small as the QCD scale �QCD even in a 
strong magnetic field eB � �2

QCD [22] (see also Refs. [23–25]). The 
method of renormalization group is a potentially useful tool to ob-
tain a clear insight on this issue on the basis of an argument of 
the hierarchy which we will elaborate in the present paper.

However, to the best of our knowledge, even the correct form 
of the mass gap in weak-coupling gauge theories has not been ob-
tained by the RG analyses in the presence of the screening effect. 
Therefore, before discussing the strong-coupling regime in QCD, 
one should understand how the screening effects are reflected in 
the parametric form of the mass gap in a clear way. Moreover, it 
is a generic issue to establish a systematic way of including the 
screening effects in the RG analyses, which will be important in a 
variety of systems. Note, for example, that there was an issue of 
the color magnetic screening in the RG analysis on the color su-
perconductivity [17].

We will show that all of the results in Eqs. (2), (3), and (4)
from the SD equations are precisely obtained from the solutions of 
the RG equations. Furthermore, we will clarify the origins of the 
overall factor of 

√
eB and the exponents in the language of the RG 

method. We will find that the properties of the interactions in the 
model/theory are directly reflected in the parametric dependences 
of the dynamical mass on the coupling constant and the magni-
tude of eB . Ultimately, these studies will be useful for a diagnosis 
of the magnetic catalysis in QCD. We will come back to this point 
with a brief comment on the perspective in the last section.

More specifically, we will closely look into the screening effect 
on the photon propagator. It would be instructive to mention a 
successful application of the RG method to color superconductiv-
ity in dense quark matter, where an appropriate treatment of the 
dynamical screening effect on the magnetic gluons was important 
for obtaining the correct magnitude of the gap [17,20]. We should 
also mention that the RG analysis of the magnetic catalysis at weak 
coupling was performed in Refs. [26,27]. Also, the magnetic catal-
ysis in QCD was investigated on the basis of both the SD and RG 
equations in Ref. [28]. However, roles of the screening effect arising 
from the quark loop in the magnetic field have not been identified 

thus far, and we are not aware of the RG analysis in the literature 
of which the result agrees with that from the SD equation (4).

As we will discuss later in more detail, the screening effect 
should be appropriately incorporated in the derivation of the RG 
equation, since the screening mass sets an intrinsic energy scale 
of the underlying theory in between the ultraviolet and infrared 
regimes. The essential technique was recently developed for the 
analysis of the RG flow in “magnetically induced QCD Kondo 
effect” [29]. In the present Letter, we will show that the same tech-
nique successfully works for the analysis of the magnetic catalysis 
at weak coupling.

The structure of this Letter is the following. We first show the 
connection between the magnetic catalysis and the dimensional 
reduction which can be understood from a simple discussion of 
the scaling dimensions. Next, we construct an effective four-Fermi 
interaction from the underlying weak-coupling theory, i.e., QED, 
and appropriately include the energy-scale dependence of the tree-
level interaction. Based on these discussions, we derive the RG 
equations and obtain the dynamical mass gap from their solutions. 
We confirm that the energy-scale dependence of the interaction 
is necessary for obtaining the correct form of the gap, which was 
however missing in the previous analyses. Finally, we discuss the 
correspondences between the RG and SD analyses, and the crucial 
roles of the photon/gluon propagators in the magnetic catalysis. 
The derivation of the RG equation is briefly summarized in an ap-
pendix.

2. Infrared scaling dimensions

We begin with looking into an analogy between the systems in 
the strong magnetic field and at high density. In the presence of a 
large Fermi sphere, the low-energy excitations near the Fermi sur-
face show the dimensional reduction: The two-dimensional phase 
space tangential to the large Fermi sphere is degenerated, and the 
energy dispersion depends only on the momentum normal to the 
sphere. Then, the dimensional reduction enhances the infrared (IR) 
dynamics, leading to the instabilities near the Fermi surface. Based 
on the analogy with this mechanism, Gusynin et al. clearly pointed 
out that the chiral symmetry breaking occurs in the strong mag-
netic field no matter how weak the coupling is [7].

One can see possible emergence of the IR instability from a 
simple argument of the scaling dimensions. The kinetic term for 
the LLL reads

Skin
LLL =

∫
dt

∫
dpzψ̄LLL(pz)(i∂tγ

0 − pzγ
3)ψLLL(pz), (5)

where we have suppressed the label specifying the location of 
the cyclotron center on the transverse plane. From this kinetic 
term, one can find the IR scaling dimension of the LLL fermion 
field when the excitation energy goes down toward zero as 
εLLL → sεLLL (t → s−1t) with s < 1. Since the LLL fermion has 
the (1 + 1)-dimensional dispersion relation (1), the longitudinal 
momentum pz also scales as pz → spz . On the other hand, the 
transverse momentum does not scale, because it serves just as 
the label of the degenerated states and does not appear in the 
dispersion relation (1). Therefore, when the kinetic term (5) is in-
variant under the scale transformation, the LLL fermion field scales 
as s−1/2 in the low-energy dynamics.

Bearing this in mind, we proceed to the effective four-Fermi 
operator in the LLL:

S int
LLL =

∫
dt

∏
i=1,2,3,4

∫
dp(i)

z G δ(p(1)
z + p(2)

z − p(3)
z − p(4)

z )

×
[
ψ̄LLL(p(2)

z )γ
μ
‖ ψLLL(p(4)

z )
][

ψ̄LLL(p(3)
z )γ‖μψLLL(p(1)

z )
]
,

(6)
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