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In this work we show how by using a Padé type analytical continuation scheme, based on the 
Schlessinger point method, it is possible to find higher production thresholds in hadron physical 
problems. Recently, an extension of this numerical approach to the complex energy plane enabled the 
calculations of auto-ionization decay resonance poles in atomic and molecular systems. Here we use 
this so-called Resonances via Padé (RVP) method, to show its convergence beyond the singular point in 
hadron physical problems. In order to demonstrate the capabilities of the RVP method, two illustrations 
for the ability to identify singularities and branch points are given. In addition, two applications for 
hadron physical problems are given. In the first one, we identify the decay thresholds from a numerically 
calculated spectral function. In the second one, we use experimental data. First, we calculate the 
resonance pole of the f0(500) or σ meson using the S0 partial wave amplitude for ππ scattering in 
very good agreement with the literature. Second, we use data on the cross section ratio R(s) for e+e−
collisions and discuss the prediction of decay thresholds which proves to be difficult if the data is noisy.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and motivation

The determination of resonance poles, uniquely defined as poles 
of the S-matrix in the complex energy plane, is a long-standing 
problem and particularly difficult for broad resonances or if decay 
channels open up in the vicinity. In these cases, simple approaches 
like a standard Breit–Wigner parametrization fail and more in-
volved theoretical tools like dispersive approaches are necessary, 
see e.g. [1] for reviews. However, these rigorous analytic meth-
ods require powerful mathematical techniques which makes them 
complicated to use in many cases.

In this letter we introduce a method that was originally devel-
oped for the calculation of auto-ionization resonances in quantum 
chemistry [2–4] to the field of hadron physics. This method is 
model-independent, easy to use and has a broad range of appli-
cability. We refer to this method as the Resonances Via Padé (RVP) 
method. The RVP method is a Padé type analytical continuation 
scheme based on the Schlessinger point method [5] for calculating 
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resonance poles and threshold energies. The key step in the appli-
cation of this method is the identification of the analytical domain 
of the given function. Once this domain is identified, one can use a 
set of real data points from this domain, and by analytical contin-
uation, calculate resonance poles and predict threshold energies.

Note, that there are different methods to calculate the coeffi-
cients in a Padé approximate. We use the RVP method based on 
the Schlessinger point method which is not equivalent to the other 
Padé approximates that are widely used in a large variety of fields 
in physics [6–8].

Let us first explain the common aspects between the RVP 
method, which is based on the Schlessinger point method, and be-
tween the Padé approximates as used for example in Ref. [6]. The 
input data in the two approaches are values of a function F (η) on 
a real grid given by {ηi}i=0,±1,±2,.... . The two approaches use the 
assumption that {ηi}i=0,±1,±2,.... are all located in the analytical 
domain of the function, to obtain a ratio of two polynomials

F (η) = P (η)

Q (η)
. (1)
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The main difference between the two methods is in the range 
of values of η for which the algebraic expansion of F (η) is valid. 
When the Padé approximates as used for example in Ref. [6] are 
used the expression given in Eq. (1) holds only when |η| < ηc

where ηc denotes a singular point of F (η) which is closest to the 
domain of the selected real grid points {ηi}i=0,±1,±2,.... . Namely, 
one can approach the singular point from the “inside” of the set of 
the grid points but can not describe F (η) beyond ηc .

However, when the RVP method is used one can describe F (η)

also beyond ηc [5]. Moreover, sufficiently close to ηc the expres-
sion given in Eq. (1) obtained by the RVP method shows a non-
regular behavior. This “non-regular” behavior indicates very clearly 
the region where the singular point F (ηc) is located. This abil-
ity is the main message of this paper. It enables us to study form 
factors and other observables and look for threshold energies and 
resonance poles. Up to our knowledge the convergence of an ap-
proximant beyond a singular point is unique to RVP method (see 
Ref. [5]) and has not been explored before by other Padé approx-
imates. When given a finite set of M data points (ηi, Fi), it is in 
general not possible to find F (η) exactly. We will therefore con-
struct an approximation to F (η) by using the Schlessinger point 
method [5]. The Schlessinger truncated continued fraction CM (η)

is then given by

CM(η) = F (η1)

1 + z1(η−η1)

1+ z2(η−η2)

... zM−1(η−ηM−1)

, (2)

where the zi are real coefficients chosen such that

CM(ηi) = F (ηi), i = 1,2, . . . , M. (3)

Once the zi are determined, an analytic continuation into the com-
plex plane is performed by choosing η to be complex, i.e. η = αeiθ . 
For further details on this method and the numerical implementa-
tion we refer to [2,4].

2. Two illustrations for the ability of the RVP method to identify 
singularities and branch points

Let us give a simple example where we compare the two meth-
ods. The considered function is

F (η) = 1

1 − η
. (4)

The input data are a set of points within the interval of 0 ≤ η < 1. 
The one-pole Padé approximant as defined in Eq. 3 in Ref. [6] is 
given by

PN
1 (η,η0 = 0) =

N−1∑
n=0

ηn + ηN

1 − η
. (5)

In Fig. 1a we show the results for N = 5. The excellent agree-
ment with the F (η) is expected since PN

1 (η, η0 = 0) is an exact 
approximation to F (η) in the whole space for any value of N . 
However, as can be seen from Fig. 1b, the one-pole Padé ap-
proach of Masjuan and Sanz-Cillero, fails to describe F (η) close 
to the singularity region of F (η) when the analytical derivatives 
in Eq. 3 of Ref. [6] are calculated numerically (around η = 0, us-
ing dx = 0.0001) or fitted (using 9 points between 0 to 1, with 
R2 = 0.9957). On the other hand, using the RVP approach the 
numerical calculations from the same 5-point input data indicate 
very clearly on the singularity, and describes the correct behav-
ior of F (η) far away from the singularity at η = 1. This illustrative 
numerical example shows clearly the advantage of using the RVP 

Fig. 1. (Color online.) Exact and analytically dilated plots for the function F (η) =
1

1−η from Eq. (4). (a) Analytical continuation results from the RVP approach (dashed 
blue line) and from the one-pole Padé approach of Masjuan and Sanz-Cillero with 
analytical derivatives (red line). Clearly, both methods accurately describe F (η) in 
the whole space, and both accurately describe the singularity. (b) Analytical con-
tinuation results from the RVP approach (dashed blue line) and from the one-pole 
Padé approach with numerical derivatives (red line) and with fitted derivatives (pur-
ple line). Clearly, both the numerical and fitted one-pole Padé approaches fail to 
discover the singularity and describe F (η) after it. Moreover, the numerical one-
pole Padé approach fails to describe the function even before the singularity.

numerical approach in the identification of the singularity of an 
unknown function.

Before studying the application of the RVP approach to hadron 
physical problems we would like to give another illustrative exam-
ple to a function of F (η) which is non-analytical due to a branch 
point (BP) at ηB P = 1:

F B P (η) = (1 − η)
1
2 . (6)

The motivation behind this example is the fact that the BP is 
often associated with a bifurcation of a particle to two new parti-
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