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There is mounting evidence suggesting that relativistic hydrodynamics becomes relevant for the physics 
of quark–gluon plasma as the result of nonhydrodynamic modes decaying to an attractor apparent 
even when the system is far from local equilibrium. Here we determine this attractor for Bjorken flow 
in N = 4 supersymmetric Yang–Mills theory (SYM) using Borel summation of the gradient expansion 
of the expectation value of the energy momentum tensor. By comparing the result to numerical 
simulations of the flow based on the AdS/CFT correspondence we show that it provides an accurate 
and unambiguous approximation of the hydrodynamic attractor in this system. This development has 
important implications for the formulation of effective theories of hydrodynamics.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Heavy-ion collision experiments and their phenomenological 
description have lead to the realization that relativistic hydrody-
namics works very well rather far outside its traditionally under-
stood domain of validity. Variants of Müller–Israel–Stewart (MIS) 
theory [1–3] have successfully been applied in rather extreme con-
ditions, which could hardly be assumed to be close to local equi-
librium. Furthermore, model calculations exist where it is possible 
to study the emergence of universal, hydrodynamic behaviour and 
test to what extent an effective description in terms of hydrody-
namics can match microscopic results [4]. Such calculations were 
initially carried out in N = 4 SYM using the AdS/CFT correspon-
dence [5–7], but similar studies have since also been performed in 
models of kinetic theory [8–10]. The conclusion from these inves-
tigations is that the domain of validity of a hydrodynamic descrip-
tion is delimited by the decay of nonhydrodynamic modes [5,6,11,
12]. The outcome of this transition to hydrodynamics (“hydroniza-
tion”) is that the system reaches a hydrodynamic attractor [13]
which governs its subsequent evolution toward equilibrium. This 
attractor is a special solution to which generic histories decay ex-
ponentially, and do so well before local equilibrium sets in. It in-
corporates all orders of the hydrodynamic gradient expansion, and 
at sufficiently late times coincides with the predictions of relativis-
tic Navier–Stokes theory. The existence of an attractor in this sense 
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is a critically important issue for hydrodynamics, because it defines 
its very meaning. It has conceptual as well as practical implications 
for the formulation of hydrodynamic theories in general as well as 
for their application to the physics of quark–gluon plasma.

Attractor behaviour was first identified explicitly in the differ-
ential equations of hydrodynamics [13,14]. An outstanding prob-
lem is the determination of such attractors at the microscopic 
level [15,4]. The first calculations of this type were described by 
Romatschke [15], who found approximate attractor solutions in the 
context of kinetic theory and N = 4 SYM by scanning for the cor-
responding initial conditions. The purpose of this Letter is to argue 
that the Borel sum of the hydrodynamic gradient expansion pro-
vides a direct way of estimating the attractor. While at late times 
this calculation clearly must give the correct result (which coin-
cides with the prediction of Navier–Stokes hydrodynamics) it is 
not obvious a priori that this calculation gives an accurate estimate 
at earlier times. We will however show explicitly that the result 
of Borel summation does indeed act as an attractor for histories 
of Bjorken flow simulated using techniques based on the AdS/CFT 
correspondence. This should be viewed in the context of the idea 
that higher orders of the gradient expansion may be relevant for 
real-world physics [16–19].

An important point is that the hydrodynamic gradient expan-
sion is the leading element of a transseries [13], and in general 
the higher order elements (“instanton sectors”) play an important 
role in defining the summation properly. These transseries sectors 
involve integration constants which need to be fixed. However, 
their contributions are exponentially suppressed and it is tempt-
ing to ignore them as a first approximation. Such an approach will 
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definitely fail at sufficiently early times (before the exponential 
suppression sets in). However, we will see that it works fine for 
τ T > 0.3, and this is enough to see that the result of the Borel 
sum acts as an attractor well before the Navier–Stokes approxima-
tion to hydrodynamics becomes accurate at τ T ≈ 0.7 [7].

A critical issue for Borel summation is the location of singu-
larities of the analytic continuation of the Borel transform. These 
singularities reflect the spectrum of nonhydrodynamic modes – 
both at the microscopic level [18] and in hydrodynamics [13,14]. 
An important testing ground for the feasibility and robustness of 
Borel summation of the gradient series of N = 4 SYM is the hy-
drodynamic theory proposed in [20], which we will refer to as 
HJSW. This theory extends Navier–Stokes hydrodynamics by adding 
degrees of freedom which mimic the least-damped nonhydrody-
namic modes of N = 4 SYM plasma (known from calculations 
of quasinormal modes of black branes [21]). This results in the 
same leading singularities [14] as those identified at the micro-
scopic level in Ref. [18]. This should be contrasted with BRSSS 
hydrodynamics [22], which instead involves only purely decaying 
modes.

In the case of BRSSS theory one cannot ignore the transseries 
sectors even as an approximation, because the analytically-contin-
ued Borel transform of the hydrodynamic series has branch-point 
singularities on the real axis (reflecting the purely-decaying MIS 
nonhydrodynamic mode) and this leads to a complex summa-
tion ambiguity. The addition of transseries sectors (which are con-
strained by resurgence relations [13,14,23]) resolves this ambiguity, 
but requires an integration constant (the transseries parameter) to 
be set correctly by comparing the result of the summation to the 
numerical calculation of the attractor. Luckily, this issue does not 
arise in N = 4 SYM, nor in HJSW hydrodynamics, because in these 
cases singularities of the analytic continuation of the Borel trans-
form occur off the real axis. Thus, omitting the instanton sectors 
is a reasonable first approximation, which is what we focus on 
here.

As a way of determining the range of proper-time where the 
Borel sum can be expected to give an accurate estimate of the at-
tractor we first calculate the Borel sum of the gradient expansion 
in the case of HJSW hydrodynamics, where it is easy to check the 
validity of the answer. The result is unique, unambiguous, and co-
incides (even at rather early times) with the attractor determined 
directly from the hydrodynamic equations. This sets the stage for 
the main theme of this Letter: the Borel summation of the gradi-
ent series of N = 4 SYM. This is technically no more challenging 
than the calculation for HJSW theory, but its significance is that 
it provides an example of a hydrodynamic attractor obtained di-
rectly from a microscopic calculation. This result can only be fully 
appreciated by inspecting the behaviour of numerically simulated 
histories of boost-invariant expansion in N = 4 SYM. A very im-
portant point to note is that while the attractor coincides with first 
order hydrodynamics at late times, it turns out to be quite distinct 
from it even at moderate times. This has implications of founda-
tional nature for relativistic hydrodynamics. A fuller discussion of 
this result and its ramifications can be found in the concluding 
section.

2. Bjorken flow

Throughout this paper we work with Bjorken flow [24], which 
imposes powerful simplifying symmetry constraints. We use proper 
time – rapidity coordinates τ , Y related to Minkowski lab-frame 
coordinates t, z by t = τ cosh Y and z = τ sinh Y where z is aligned 
along the collision axis. A system undergoing Bjorken flow has 
eigenvalues of the expectation value of the energy momentum ten-
sor

T μ
ν = diag(E,PL,PT ,PT )

μ
ν (1)

which are functions of the proper time τ alone. In a conformal 
theory, the conditions of tracelessness and conservation can be ex-
pressed as [25]

PL = −E − τ Ė , PT = E + 1

2
τ Ė . (2)

The departure of these quantities from the equilibrium pressure at 
the same energy density, P ≡ E/3, is a measure of how far a given 
state is from local equilibrium. This is conveniently captured by 
the pressure anisotropy

A ≡ PT −PL

P
(3)

which we will study as a function not of the proper time τ , but 
of the dimensionless “clock variable” w ≡ T τ , where T is the ef-
fective temperature (defined as the temperature of the equilibrium 
state with the same energy density). It is critically important to 
compare states of the system at different values of this dimension-
less variable if we wish to see the attractor behaviour which is of 
central interest here.

3. The hydrodynamic attractor in hydrodynamics

Hydrodynamic theories are described by sets of nonlinear par-
tial differential equations. The key simplification brought by the 
assumption of Bjorken flow is that the equations of hydrodynamics 
reduce to ordinary differential equations. For example, the evo-
lution equation for the pressure anisotropy in conformal BRSSS 
theory reads [13,4]

Cτπ

(
1 + A

12

)
A ′ +

(
Cτπ

3w
+ Cλ1

8Cη

)
A2 = 3

2

(
8Cη

w
− A

)
(4)

where the prime denotes a derivative with respect to w , and 
the dimensionless constants Cη, Cτπ , Cλ1 are transport coefficients 
(whose values in the case of N = 4 SYM are known, see e.g. 
Ref. [4]). This equation is nonlinear, but it can be solved in pow-
ers of 1/w: this is the hydrodynamic gradient expansion whose 
leading term reproduces the prediction of Navier–Stokes hydrody-
namics. It also possesses an attractor, which can be determined 
numerically by setting initial conditions appropriately [13]. It is 
important to observe that the attractor becomes indistinguish-
able from the first order truncation of the gradient series only for 
w > 0.7. For smaller values of w , the numerical solutions clearly 
decay to the attractor, not to the truncated gradient series.

The pressure anisotropy in HJSW theory satisfies a second or-
der nonlinear ordinary differential equation, whose exact form can 
be found in Refs. [14,4], and a similar analysis leads to the nu-
merical determination of its attractor solution (to which we shall 
return shortly). The point we wish to make at this juncture is that 
we cannot proceed in the same way in N = 4 SYM, because there 
we cannot write down a closed differential equation like Eq. (4). 
To find the attractor in this case one has to find another way. The 
approach explored in this Letter is to sum the hydrodynamic gradi-
ent expansion, whose leading 240 coefficients were obtained using 
the AdS/CFT correspondence in Ref. [18]. In the following we dis-
cuss the properties of the series and the summation, using HJSW 
theory as a testing ground.
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