Contents lists available at ScienceDirect

Physics Letters B

The quark number and helicity light-front operators can then respectively be seen as the sum and difference
$\int \mathrm{d}^{3} x \bar{\psi} \gamma^{+} \psi=\hat{N}_{R}^{q}+\hat{N}_{L}^{q}$,
$\int \mathrm{d}^{3} x \bar{\psi} \gamma^{+} \gamma_{5} \psi=\hat{N}_{R}^{q}-\hat{N}_{L}^{q}$
of the right- and left-handed densities
$\hat{N}_{R, L}^{q}=\int \mathrm{d}^{3} x \bar{\psi}_{R, L} \gamma^{+} \psi_{R, L}$,
where $a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)$ for a generic four-vector a, and $\mathrm{d}^{3} x=$ $\mathrm{d} x^{-} \mathrm{d}^{2} x_{\perp}$.

Alternatively, the quark field operator can be decomposed into up and down transverse polarizations [12]
$\psi=\psi_{\uparrow}+\psi_{\downarrow}, \quad \psi_{\uparrow, \downarrow}=\frac{1}{2}\left(\mathbb{1} \pm \gamma^{j} \gamma_{5}\right) \psi$
with $j=1$ or 2 . While the sum of up and down densities naturally gives the quark number operator, their difference defines the so-called quark transversity
$\int \mathrm{d}^{3} x \bar{\psi} \gamma^{+} \psi=\hat{N}_{\uparrow}^{q}+\hat{N}_{\downarrow}^{q}$,
$\int \mathrm{d}^{3} x \bar{\psi} i \sigma^{j+} \gamma_{5} \psi=\hat{N}_{\uparrow}^{q}-\hat{N}_{\downarrow}^{q}$,
where
$\hat{N}_{\uparrow, \downarrow}^{q}=\int \mathrm{d}^{3} x \bar{\psi}_{\uparrow, \downarrow} \gamma^{+} \psi_{\uparrow, \downarrow}$.
The same decompositions can be performed with the quark light-front OAM operator

$$
\begin{align*}
\sqrt{2} \epsilon_{+\alpha \beta}^{\mu} \int \mathrm{d}^{3} x \bar{\psi} \gamma^{+} x^{\alpha} \frac{i}{2} \stackrel{\leftrightarrow}{D}^{\beta} \psi & =\hat{L}_{R}^{q, \mu}+\hat{L}_{L}^{q, \mu} \tag{9}\\
& =\hat{L}_{\uparrow}^{q, \mu}+\hat{L}_{\downarrow}^{q, \mu}
\end{align*}
$$

where
$\hat{L}_{a}^{q, \mu}=\sqrt{2} \epsilon^{\mu}{ }_{+\alpha \beta} \int \mathrm{d}^{3} x \bar{\psi}_{a} \gamma^{+} \chi^{\alpha} \frac{i}{2} \stackrel{\leftrightarrow}{D}^{\beta} \psi_{a}$
with the convention $\epsilon_{0123}=+1, a=R, L, \uparrow, \downarrow$, and $\stackrel{\leftrightarrow}{D}^{\beta}=\vec{\partial}^{\beta}-$ $\overleftarrow{\partial} \beta-2 i g A^{\beta}$ the symmetric gauge covariant derivative. Considering instead the differences of densities leads us to longitudinal and transverse spin-orbit correlations $\left(\epsilon_{T}^{12}=-\epsilon_{T}^{21}=+1\right.$ and $a^{[\mu} b^{\nu]}=$ $\left.a^{\mu} b^{\nu}-a^{\nu} b^{\mu}\right)$
$\hat{C}_{z}^{q} \equiv \epsilon_{T}^{l k} \int \mathrm{~d}^{3} x \bar{\psi} \gamma^{+} \gamma_{5} x^{l} \frac{i}{2} \stackrel{\leftrightarrow}{D}^{k} \psi=\hat{L}_{R}^{q,+}-\hat{L}_{L}^{q,+}$,
$\hat{C}_{j}^{q} \equiv \sqrt{2} \epsilon_{T}^{j l} \int \mathrm{~d}^{3} x \bar{\psi} i \sigma^{j+} \gamma_{5} x^{\left[-\frac{i}{2}\right.} \stackrel{\leftrightarrow}{D}^{l]} \psi=\hat{L}_{\uparrow}^{q, j}-\hat{L}_{\downarrow}^{q, j}$
without summation over j in (12). These are the diagonal components of a 3×3 matrix whose entries are the directions of quark polarization and OAM.

The longitudinal spin-orbit correlation (11) has been studied in [7]. In this Letter, we focus on the transverse spin-orbit correlation (12) which can conveniently be rewritten as (once again without summation over j)
$\hat{C}_{j}^{q}=\sqrt{2} \epsilon_{T}^{j l} \int \mathrm{~d}^{3} x\left[x^{-} \hat{T}_{q 5}^{j+l}-x^{l} \hat{T}_{q 5}^{j+-}\right]$
with $\hat{T}_{q 5}^{\lambda \mu \nu}$ the quark energy-momentum tensor where γ^{μ} has been replaced by $i \sigma^{\lambda \mu} \gamma_{5}$
$\hat{T}_{q 5}^{\lambda \mu \nu}(x)=\bar{\psi}(x) i \sigma^{\lambda \mu} \gamma_{5} \frac{i}{2} \stackrel{\leftrightarrow}{D^{\nu}} \psi(x)$.
We added the index 5 to indicate the presence of the matrix γ_{5} and to distinguish it from $\hat{T}_{q}^{\lambda \mu \nu}=\bar{\psi} i \sigma^{\lambda \mu} \frac{i}{2} \stackrel{\leftrightarrow}{D}^{\nu} \psi$. These two operators are equivalent owing to the identity $i \sigma^{\mu \nu} \gamma_{5}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} \sigma_{\alpha \beta}$.

2.2. Parametrization

We find that the non-forward matrix elements of $\hat{T}_{q 5}^{\lambda \mu \nu}$ can be parametrized in terms of seven generalized form factors (GFFs)
$\left\langle p^{\prime}, \boldsymbol{s}^{\prime}\right| \hat{T}_{q 5}^{\lambda \mu \nu}(0)|p, \boldsymbol{s}\rangle=\bar{u}\left(p^{\prime}, \boldsymbol{s}^{\prime}\right) \Gamma_{q 5}^{\lambda \mu \nu} u(p, \boldsymbol{s})$
with

$$
\begin{align*}
\Gamma_{q 5}^{\lambda \mu \nu}= & \frac{P^{\nu} P^{[\lambda} \Delta^{\mu]} \gamma_{5}}{2 M^{2}} A_{T}^{q}(t)+\frac{g^{\nu[\lambda} \Delta^{\mu]} \gamma_{5}}{2} \tilde{A}_{T}^{q}(t) \\
& +\frac{p^{\nu} P^{[\lambda} \gamma^{\mu]} \gamma_{5}}{M} B_{T}^{q}(t)+M g^{\nu[\lambda} \gamma^{\mu]} \gamma_{5} \tilde{B}_{T}^{q}(t) \\
& +\frac{\Delta^{\nu} \Delta^{[\lambda} \gamma^{\mu]} \gamma_{5}}{4 M} C_{T}^{q}(t)+P^{v} i \sigma^{\lambda \mu} \gamma_{5} D_{T}^{q}(t) \\
& +\frac{p^{[\lambda} i \sigma^{\mu \nu]} \gamma_{5}}{2} \tilde{D}_{T}^{q}(t), \tag{16}
\end{align*}
$$

where \boldsymbol{s} and \boldsymbol{s}^{\prime} are the initial and final rest-frame polarization unit vectors, M is the nucleon mass, $P=\frac{p^{\prime}+p}{2}$ is the average four-momentum, and $t=\Delta^{2}$ is the square of the four-momentum transfer $\Delta=p^{\prime}-p$. Note that the last term is totally antisymmetric over all three Lorentz indices, so that $\frac{P^{[\lambda i} \sigma^{\mu \nu]} \gamma_{5}}{2}=P^{\nu} i \sigma^{\lambda \mu} \gamma_{5}+$ $P^{[\lambda} i \sigma^{\mu] \nu} \gamma_{5}$. To recover the twist-2 parametrization of Hägler and Diehl $[13,14]$, one has to symmetrize over the pair of indices $\{\mu \nu\}$, antisymmetrize over the pair of indices $[\lambda \mu]$ and remove all the traces [15]. As a result, the tilde GFFs become redundant
$3 \tilde{A}_{T}^{q}(t) \stackrel{\mathrm{tw}-2}{=}(\tau-1) A_{T}^{q}(t)+C_{T}^{q}(t)-D_{T}^{q}(t)$,
$3 \tilde{B}_{T}^{q}(t) \stackrel{\mathrm{tw}-2}{=}(\tau-1) B_{T}^{q}(t)-\tau C_{T}^{q}(t)+D_{T}^{q}(t)$,
$3 \tilde{D}_{T}^{q}(t) \stackrel{\mathrm{tw}-2}{=}-D_{T}^{q}(t)$,
where $\tau=\frac{t}{4 M^{2}}$. This means that only four GFFs survive at leading twist in agreement with the results of [13,14]. More precisely, we find that the two parametrizations at leading twist are related as follows

$$
\begin{align*}
A_{T}^{q}(t)+B_{T}^{q}(t) & =B_{T 20}(t), \tag{20}\\
B_{T}^{q}(t) & =2 \tilde{A}_{T 20}(t)+B_{T 20}(t), \tag{21}\\
C_{T}^{q}(t) & =2 \tilde{B}_{T 21}(t), \tag{22}\\
D_{T}^{q}(t)-B_{T}^{q}(t) & =A_{T 20}(t)-2 \tau \tilde{A}_{T 20}(t) . \tag{23}
\end{align*}
$$

We are ultimately interested in the matrix elements of Eq. (13) which involves one explicit power of x. It is therefore sufficient to expand Eq. (15) up to linear order in Δ [3,16]. Using the light-front spinors (see e.g. Appendix A of [17]) with the same rest-frame polarization $\boldsymbol{s}^{\prime}=\boldsymbol{s}=\left(\boldsymbol{s}_{\perp}, s_{z}\right)$, we obtain

$$
\begin{align*}
& \left\langle p^{\prime}, \boldsymbol{s}\right| \hat{T}_{q 5}^{\lambda \mu \nu}|p, \boldsymbol{s}\rangle= \\
& \quad\left[\frac{2 P^{v} P^{[\lambda} S^{\mu]}}{M}+\frac{M P^{v} i \epsilon^{+\lambda \mu \Delta}}{P^{+}}\right]\left(B_{T}^{q}-D_{T}^{q}\right) \\
& \quad+\left[2 M g^{v[\lambda} S^{\mu]}+\frac{M g^{v / \lambda}{ }_{i} \epsilon^{\mu]+P \Delta}}{P^{+}}\right] \tilde{B}_{T}^{q} \\
& \quad-\frac{P^{v} i \epsilon^{\lambda \mu P \Delta}}{M} B_{T}^{q}-M i \epsilon^{\lambda \mu \nu \Delta} \tilde{D}_{T}^{q}+\mathcal{O}\left(\Delta^{2}\right) \tag{24}
\end{align*}
$$

with the covariant spin vector $S^{\mu}=\left[s_{z} P^{+},-s_{z} P^{-}+\frac{\boldsymbol{P}_{\perp}}{P^{+}} \cdot\left(M \boldsymbol{s}_{\perp}+\right.\right.$ $\left.\left.\boldsymbol{P}_{\perp} s_{z}\right), M \boldsymbol{s}_{\perp}+\boldsymbol{P}_{\perp} s_{z}\right]$ satisfying $P \cdot S=0$ and $S^{2}=-M^{2}\left(1-\tau s_{z}^{2}\right)$.

https://daneshyari.com/en/article/8187349

Download Persian Version:

https://daneshyari.com/article/8187349

Daneshyari.com

