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We extend the study of quark spin–orbit correlations in the nucleon to the case of transverse polarization. 
At the leading-twist level, this completes the spin structure of the quark kinetic energy–momentum 
tensor. In particular, we revisit the transversity decomposition of angular momentum proposed a decade 
ago by Burkardt and introduce a new transverse correlation, namely between quark transversity and 
orbital angular momentum. We also provide for the first time the Wandzura–Wilczek expression for the 
second Mellin moment of twist-3 transversity generalized parton distributions, along with a new sum 
rule. Based on lattice calculation results, we conclude that the quark transverse spin–orbit correlation is 
negative for both up and down flavors, just like in the longitudinal case.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding the nucleon spin structure is one of the key 
questions in hadronic physics. It opens a window on a wide range 
of non-perturbative effects in quantum chromodynamics (QCD) 
currently studied at many facilities such as Jefferson Lab, RHIC and 
COMPASS [1], and is a major pillar of the physics case of the future 
electron–ion collider (EIC) [2]. Although the proper decomposition 
of the nucleon spin into quark and gluon contributions constitutes 
one of the fundamental motivations in this field, see e.g. [3–5], the 
spin structure turns out to be much richer owing to spin–orbit cor-
relations [6–8].

In a former paper [7], the quark longitudinal spin–orbit corre-
lation was studied in detail by performing a (chiral-even) helicity 
decomposition of the quark energy–momentum tensor. It has, in 
particular, been shown that the quark longitudinal spin–orbit cor-
relation can quantitatively be expressed in terms of parton dis-
tributions. Both current phenomenological extractions based on 
experimental data and lattice calculations indicate that the quark 
spin is, in average, opposite to the quark kinetic orbital angular 
momentum (OAM).

In this Letter, we discuss the quark transverse spin–orbit cor-
relation by revisiting the (chiral-odd) transversity decomposition 
of the quark energy–momentum tensor considered a decade ago 

E-mail addresses: bhoonahp@student.ethz.ch (A. Bhoonah), 
cedric.lorce@polytechnique.edu (C. Lorcé).

by Burkardt [9,10]. Mimicking the approach used by Ji to relate 
angular momentum contributions to generalized parton distribu-
tions (GPDs) [11], Burkardt decomposed the symmetric energy–
momentum tensor and introduced accordingly the correlation be-
tween quark transversity and total angular momentum. Here we 
consider the more general asymmetric energy–momentum ten-
sor leading to another transverse correlation, now between quark 
transversity and OAM.

The Letter is organized as follows: In section 2, we define the 
quark transverse spin–orbit correlation operator and express the 
corresponding expectation value in terms of tensor generalized 
form factors. In section 3 we relate these generalized form factors 
to moments of measurable parton distributions and derive for the 
first time the Wandzura–Wilczek expression for the second Mellin 
moment of twist-3 transversity generalized parton distributions, 
along with a new sum rule. In section 4, we compare the various 
contributions obtained on the lattice with relativistic quark model 
predictions, provide an estimate of the quark transverse spin–orbit 
correlation, and we conclude the paper with section 5.

2. Quark spin–orbit correlations

2.1. Decomposition based on polarization

It is well known that the quark field operator can be decom-
posed into right- and left-handed contributions

ψ = ψR + ψL, ψR,L = 1
2 (1± γ5)ψ. (1)
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The quark number and helicity light-front operators can then re-
spectively be seen as the sum and difference∫

d3xψγ +ψ = N̂q
R + N̂q

L, (2)
∫

d3xψγ +γ5ψ = N̂q
R − N̂q

L (3)

of the right- and left-handed densities

N̂q
R,L =

∫
d3xψ R,Lγ

+ψR,L, (4)

where a± = 1√
2
(a0 ± a3) for a generic four-vector a, and d3x =

dx− d2x⊥ .
Alternatively, the quark field operator can be decomposed into 

up and down transverse polarizations [12]

ψ = ψ↑ + ψ↓, ψ↑,↓ = 1
2 (1± γ jγ5)ψ (5)

with j = 1 or 2. While the sum of up and down densities natu-
rally gives the quark number operator, their difference defines the 
so-called quark transversity∫

d3xψγ +ψ = N̂q
↑ + N̂q

↓, (6)
∫

d3xψ iσ j+γ5ψ = N̂q
↑ − N̂q

↓, (7)

where

N̂q
↑,↓ =

∫
d3xψ↑,↓γ +ψ↑,↓. (8)

The same decompositions can be performed with the quark 
light-front OAM operator

√
2ε

μ
+αβ

∫
d3xψγ +xα i

2

↔
Dβψ = L̂q,μ

R + L̂q,μ
L

= L̂q,μ
↑ + L̂q,μ

↓ ,

(9)

where

L̂q,μ
a = √

2ε
μ

+αβ

∫
d3xψaγ

+xα i
2

↔
Dβψa (10)

with the convention ε0123 = +1, a = R, L, ↑, ↓, and 
↔
Dβ = →

∂ β −
←
∂ β − 2ig Aβ the symmetric gauge covariant derivative. Considering 
instead the differences of densities leads us to longitudinal and 
transverse spin–orbit correlations (ε12

T = −ε21
T = +1 and a[μbν] =

aμbν − aνbμ)

Ĉq
z ≡ εlk

T

∫
d3xψγ +γ5 xl i

2

↔
Dkψ = L̂q,+

R − L̂q,+
L , (11)

Ĉq
j ≡ √

2ε
jl
T

∫
d3xψ iσ j+γ5 x[− i

2

↔
Dl]ψ = L̂q, j

↑ − L̂q, j
↓ (12)

without summation over j in (12). These are the diagonal compo-
nents of a 3 × 3 matrix whose entries are the directions of quark 
polarization and OAM.

The longitudinal spin–orbit correlation (11) has been studied 
in [7]. In this Letter, we focus on the transverse spin–orbit cor-
relation (12) which can conveniently be rewritten as (once again 
without summation over j)

Ĉq
j = √

2ε
jl
T

∫
d3x

[
x− T̂ j+l

q5 − xl T̂ j+−
q5

]
(13)

with T̂ λμν
q5 the quark energy–momentum tensor where γ μ has 

been replaced by iσλμγ5

T̂ λμν
q5 (x) = ψ(x)iσλμγ5

i
2

↔
Dνψ(x). (14)

We added the index 5 to indicate the presence of the matrix γ5

and to distinguish it from T̂ λμν
q = ψ iσλμ i

2

↔
Dνψ . These two opera-

tors are equivalent owing to the identity iσμνγ5 = 1
2 εμναβσαβ .

2.2. Parametrization

We find that the non-forward matrix elements of T̂ λμν
q5 can be 

parametrized in terms of seven generalized form factors (GFFs)

〈p′, s′|T̂ λμν
q5 (0)|p, s〉 = u(p′, s′)�λμν

q5 u(p, s) (15)

with

�
λμν
q5 = Pν P [λ�μ]γ5

2M2 Aq
T (t) + gν[λ�μ]γ5

2 Ãq
T (t)

+ Pν P [λγ μ]γ5
M Bq

T (t) + M gν[λγ μ]γ5 B̃q
T (t)

+ �ν�[λγ μ]γ5
4M Cq

T (t) + Pν iσλμγ5 Dq
T (t)

+ P [λ iσμν]γ5
2 D̃q

T (t), (16)

where s and s′ are the initial and final rest-frame polarization 
unit vectors, M is the nucleon mass, P = p′+p

2 is the average 
four-momentum, and t = �2 is the square of the four-momentum 
transfer � = p′ − p. Note that the last term is totally antisymmet-

ric over all three Lorentz indices, so that P [λ iσμν]γ5
2 = Pν iσλμγ5 +

P [λiσμ]νγ5. To recover the twist-2 parametrization of Hägler and 
Diehl [13,14], one has to symmetrize over the pair of indices {μν}, 
antisymmetrize over the pair of indices [λμ] and remove all the 
traces [15]. As a result, the tilde GFFs become redundant

3 Ãq
T (t)

tw−2= (τ − 1) Aq
T (t) + Cq

T (t) − Dq
T (t), (17)

3B̃q
T (t)

tw−2= (τ − 1) Bq
T (t) − τCq

T (t) + Dq
T (t), (18)

3D̃q
T (t)

tw−2= −Dq
T (t), (19)

where τ = t
4M2 . This means that only four GFFs survive at leading 

twist in agreement with the results of [13,14]. More precisely, we 
find that the two parametrizations at leading twist are related as 
follows

Aq
T (t) + Bq

T (t) = BT 20(t), (20)

Bq
T (t) = 2 ÃT 20(t) + BT 20(t), (21)

Cq
T (t) = 2B̃ T 21(t), (22)

Dq
T (t) − Bq

T (t) = AT 20(t) − 2τ ÃT 20(t). (23)

We are ultimately interested in the matrix elements of Eq. (13)
which involves one explicit power of x. It is therefore sufficient to 
expand Eq. (15) up to linear order in � [3,16]. Using the light-front 
spinors (see e.g. Appendix A of [17]) with the same rest-frame po-
larization s′ = s = (s⊥, sz), we obtain

〈p′, s|T̂ λμν
q5 |p, s〉 =[

2Pν P [λ Sμ]
M + M Pν iε+λμ�

P+
] (

Bq
T − Dq

T

)

+
[

2M gν[λSμ] + M gν[λ iεμ]+P�

P+
]

B̃q
T

− Pν iελμP�

M Bq
T − M iελμν� D̃q

T +O(�2) (24)

with the covariant spin vector Sμ = [sz P+, −sz P− + P⊥
P+ · (Ms⊥ +

P ⊥sz), Ms⊥ + P⊥sz] satisfying P · S = 0 and S2 = −M2(1 − τ s2
z ). 
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