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Horizonless spacetimes describing highly compact exotic objects with reflecting (instead of absorbing) 
surfaces have recently attracted much attention from physicists and mathematicians as possible quantum-
gravity alternatives to canonical classical black-hole spacetimes. Interestingly, it has recently been proved 
that spinning compact objects with angular momenta in the sub-critical regime ā ≡ J/M2 ≤ 1 are 
characterized by an infinite countable set of surface radii, {rc(ā; n)}n=∞

n=1 , that can support asymptotically 
flat static configurations made of massless scalar fields. In the present paper we study analytically
the physical properties of ultra-spinning exotic compact objects with dimensionless angular momenta 
in the complementary regime ā > 1. It is proved that ultra-spinning reflecting compact objects 
with dimensionless angular momenta in the super-critical regime 

√
1 − [m/(l + 2)]2 ≤ |ā|−1 < 1 are 

characterized by a finite discrete family of surface radii, {rc(ā; n)}n=Nr
n=1 , distributed symmetrically around 

r = M , that can support spatially regular static configurations of massless scalar fields (here the integers 
{l, m} are the harmonic indices of the supported static scalar field modes). Interestingly, the largest 
supporting surface radius rmax

c (ā) ≡ maxn{rc(ā; n)} marks the onset of superradiant instabilities in the 
composed ultra-spinning-exotic-compact-object-massless-scalar-field system.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Curved black-hole spacetimes with absorbing event horizons 
are one of the most exciting predictions of the classical Einstein 
field equations. The physical and mathematical properties of clas-
sical black-hole spacetimes have been extensively explored during 
the last five decades [1,2], and it is widely believed that the re-
cent detection of gravitational waves [3,4] provides compelling ev-
idence for the existence of spinning astrophysical black holes of the 
Kerr family. Intriguingly, however, the physical properties of highly 
compact horizonless objects have recently been explored by many 
physicists (see [5–22] and references therein) in an attempt to de-
termine whether these exotic curved spacetimes can serve as valid 
alternatives, possibly within the framework of a unified quantum 
theory of gravity, to canonical black-hole spacetimes.

In a very interesting work, Maggio, Pani, and Ferrari [17] have 
recently explored the complex resonance spectrum of massless 
scalar fields linearly coupled to horizonless spinning exotic com-
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pact objects. The numerical results presented in [17] have explic-
itly demonstrated the important physical fact that, for given values 
{l, m} of the scalar field harmonic indices, there is a critical com-
pactness parameter characterizing the central reflecting objects, 
above which the massless scalar fields grow exponentially in time. 
This characteristic behavior of the fields in the horizonless spin-
ning curved spacetimes indicates that the corresponding exotic 
objects may become unstable when coupled to bosonic (integer-
spin) fields [23]. In particular, this superradiant instability [24–28]
is attributed to the fact that the characteristic absorbing boundary 
conditions of classical black-hole spacetimes have been replaced in 
[17] by reflecting boundary conditions at the compact surfaces of 
the horizonless exotic objects.

The physical properties of marginally-stable spinning exotic 
compact objects were studied analytically in [19]. In particular, 
it was explicitly proved in [19] that reflecting compact objects 
with sub-critical angular momenta in the regime 0 < ā ≡ J/M2 ≤ 1
[29,30] are characterized by an infinite countable set of surface 
radii, {rc(ā; n)}n=∞

n=1 , which can support spatially regular static 
(marginally-stable) configurations made of massless scalar fields. 
The ability of spinning compact objects to support static scalar 
field configurations is physically interesting from the point of view 
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of the no-hair theorems discussed in [31–33]. In particular, it was 
proved in [31,32] that spherically-symmetric (non-spinning) hori-
zonless reflecting objects, like black holes with absorbing horizons 
[34–36], cannot support spatially regular nonlinear massless scalar 
field configurations [37–39].

Interestingly, the parameter space of the composed spinning-
exotic-compact-object-massless-scalar-field system is divided by 
the outermost supporting radius, rmax

c (ā) ≡ maxn{rc(ā; n)}, to sta-
ble and unstable configurations. In particular, horizonless reflect-
ing objects whose surface radii lie in the regime rc > rmax

c (ā) are 
stable to scalar perturbation modes [17,19], whereas the ergore-
gion of compact enough spinning objects in the physical regime 
rc < rmax

c (ā) can trigger superradiant instabilities in the surround-
ing bosonic clouds [17,19].

The main goal of the present paper is to explore the phys-
ical properties of exotic ultra-spinning (ā > 1) horizonless com-
pact objects [40–43]. Interestingly, we shall explicitly prove be-
low that spinning compact objects in the super-critical ā > 1
regime are characterized by a finite discrete family of surface 
radii, {rc(ā; n)}n=Nr

n=1 [44], that can support the static (marginally-
stable) scalar field configurations. This unique property of the 
ultra-spinning (ā > 1) reflecting compact objects should be con-
trasted with the previously proved fact [19] that sub-critical 
(ā < 1) spinning objects are characterized by an infinite countable 
family of surface radii, {rc(ā; n)}n=∞

n=1 , that can support spatially 
regular static scalar field configurations.

Using analytical techniques, we shall determine in this pa-
per the characteristic critical (largest) surface radius, rmax

c (ā) ≡
maxn{rc(ā; n)}, of the ultra-spinning reflecting objects that, for 
given value of the super-critical rotation parameter ā, marks the 
boundary between stable and superradiantly unstable spinning 
configurations. In particular, below we shall derive a remarkably 
compact analytical formula for the discrete (and finite) family of 
supporting surface radii which characterizes exotic near-critical 
spinning horizonless compact objects in the physically interesting 
regime 0 < ā − 1 � 1.

2. Description of the system

We consider a spatially regular configuration made of a mass-
less scalar field � which is linearly coupled to an ultra-spinning 
reflecting compact object of radius rc, mass M , and dimensionless 
angular momentum in the super-critical regime

ā ≡ J

M2
> 1 . (1)

Following the interesting physical model of the exotic compact ob-
jects discussed by Maggio, Pani, and Ferrari [17] (see also [18–20]), 
we shall assume that the external spacetime geometry of the spin-
ning compact object is described by the Kerr line element [1,2,29,
45–50]

ds2 = − �

ρ2
(dt − a sin2 θdφ)2 + ρ2

�
dr2 + ρ2dθ2

+ sin2 θ

ρ2

[
adt − (r2 + a2)dφ

]2
for r > rc , (2)

where the metric functions are given by � ≡ r2 − 2Mr + a2 and 
ρ2 ≡ r2 + a2 cos2 θ with a ≡ Mā.

The spatial and temporal behavior of the massless scalar field 
configurations in the curved spacetime (2) of the spinning reflect-
ing object is governed by the compact Klein–Gordon wave equa-
tion [51,52]

∇ν∇ν� = 0 . (3)

Using the spatial-temporal expression [51–53]

�(t, r, θ,φ) =
∑
l,m

eimφ Slm(θ;aω)Rlm(r; M,a,ω)e−iωt (4)

for the linearized massless scalar field, one finds the ordinary dif-
ferential equation [51,52]

�
d

dr

(
�

dRlm

dr

)
+

{
[ω(r2 +a2)−ma]2 +�(2maω− Klm)

}
Rlm = 0

(5)

for the radial part Rlm(r; M, a, ω) of the massless scalar eigenfunc-
tion. The frequency-dependent eigenvalues Klm(aω) of the familiar 
spheroidal harmonic functions Slm(θ; aω) [51,52,54–58] are given 
by the small frequency aω � 1 expression

Klm − a2ω2 = l(l + 1) +
∞∑

k=1

ck(aω)2k , (6)

where the explicit functional expression of the coefficients {ck =
ck(l, m)} is given in [56].

Following the interesting physical models discussed in [17–20]
for horizonless curved spacetimes, we shall assume that the scalar 
fields vanish on the compact reflecting surfaces of the central ex-
otic compact objects [59]:

R(r = rc) = 0 . (7)

In addition, we consider asymptotically flat linearized scalar field 
configurations which are characterized by asymptotically decaying 
radial eigenfunctions:

R(r → ∞) → 0 . (8)

3. The resonance condition of the composed 
ultra-spinning-exotic-compact-object-massless-scalar-field 
configurations

In the present section we shall derive, for a given set of the 
dimensionless physical parameters {rc/M, ̄a, l, m}, the characteris-
tic resonance condition for the existence of ultra-spinning reflect-
ing exotic horizonless objects that support spatially regular static
(marginally-stable) linearized scalar field configurations.

Substituting into the radial equation (5) the characteristic rela-
tion

ω = 0 (9)

for the static scalar field configurations, one obtains the ordinary 
differential equation [19,60]

x(1 − x)
d2 F

dx2
+ {(1 − γ ) − [1 + 2(l + 1) − γ ]x}dF

dx

− [(l + 1)2 − γ (l + 1)]F = 0 , (10)

where

R(x) = x−γ /2(1 − x)l+1 F (x) , (11)

x ≡ r − M(1 + i
√

ā2 − 1)

r − M(1 − i
√

ā2 − 1)
, (12)

and

γ ≡ m√
1 − ā−2

. (13)

The physically acceptable solution of the characteristic radial 
scalar equation (10) which respects the asymptotic boundary con-
dition (8) is given by [19,56,61,62]
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