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We apply the Lewis–Riesenfeld invariant method for the harmonic oscillator with time dependent mass 
and frequency to the modes of a charged scalar field that propagates in a curved, homogeneous and 
isotropic spacetime. We recover the Bunch–Davies vacuum in the case of a flat DeSitter spacetime, 
the equivalent one in the case of a closed DeSitter spacetime and the invariant vacuum in a curved 
spacetime that evolves adiabatically. In the three cases, it is computed the thermodynamical magnitudes 
of entanglement between the modes of the particles and antiparticles of the invariant vacuum, and the 
modification of the Friedmann equation caused by the existence of the energy density of entanglement. 
The amplitude of the vacuum fluctuations are also computed.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

All the machinery of a quantum field theory is ultimately 
rooted on the definition of the vacuum state. Once this is defined 
a Fock space can be generated from the number eigenstates of the 
corresponding representation and the general quantum state of the 
field can be written as a vector of such space. The field can then 
be interpreted as composed of many particles propagating along 
the spacetime.

However, the definition of the vacuum state and the associated 
definition of particle cannot be always unambiguously stated in a 
curved spacetime. The most appropriate definition of the vacuum 
state in a local region of the spacetime may not correspond to 
the vacuum state in another local region, and that may lead to 
the creation of particles [1–6]. The question is then which vacuum 
state has to be selected from the set of possible vacuum states, 
with a twofold consideration: which quantum representation can 
determine the appropriate boundary condition for the field; and, 
which one can represent the observable particles.

A customary approach [7,8] is to define the vacuum state in an 
“IN” and “OUT” regions that asymptotically behave like Minkowski 
spacetime, where the vacuum state is therefore well defined. The 
corresponding “IN” vacuum is assumed to supply the initial bound-
ary condition for the field and the “OUT” vacuum is expected to 
define the kind of measurable particles. Generally, the result is 
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that the initial vacuum state turns out to be full of particles of 
the “OUT” representation. A problem with this approach is that it 
is not always possible to find in a curved spacetime two asymptot-
ically flat regions where to define these vacuum states. That might 
wrongly induce us to think that a well defined vacuum state can-
not be then given.

In this paper we shall adopt a different point of view. On the 
one hand, one would expect that the appropriate boundary con-
dition for a cosmological field should be global, i.e. not tied to 
a local initial state, and such that the field should remain in the 
same state along the entire evolution of the field if no external 
force is present. In that case the state of the field should be invari-
ant under time evolution. Furthermore, in cosmology there is no 
external element to the universe1 so in particular, one would ex-
pect the field to stay in the ground state or the state of minimal 
excitation of some invariant representation.

In most cases of interest the wave equation of the field modes 
in a curved spacetime turns out to be the wave equation of a har-
monic oscillator with time dependent mass and frequency. Then, 
we can apply the method of the invariants of the harmonic os-
cillator, developed by Lewis–Riesenfield [9,10] and others [11–16], 
to find the invariant representation of the field modes. The impor-
tant property of the invariant representation is that the associated 
number operator turns out to be a constant of motion. It means 
that once the field is in a given quantum superposition of the 
number eigenstates of the invariant representation it remains in 

1 We are not considering a multiverse scenario here. If that would be the case 
the same would apply to the multiverse as a whole instead of a single universe.
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the same state along the entire evolution of the field. In particular, 
if the field is in the vacuum state of the invariant representation at 
a given moment of time it will remain in the same vacuum state 
along the entire evolution of the field.

Then, we shall assume that the field is in the vacuum state of 
the invariant representation. Furthermore, instead of imposing an 
initial condition on the state of the field at some given time t0, 
we shall impose the boundary condition that the largest modes 
of the field must be the positive frequency modes of a field that 
propagates in a Minkowski spacetime. This is a boundary condition 
that is ultimately rooted in the equivalence principle of the theory 
of relativity. For a sufficiently closed neighborhood, the spacetime 
looks always like a flat spacetime and, therefore, the largest modes 
of the field must not feel the curvature of the spacetime. This 
boundary condition will fix the invariant representation to be used 
and, thus, it will fix the invariant vacuum state.

In terms of the invariant representation the invariant vacuum 
state will then represent the ground state along the entire evolu-
tion of the field. However, in terms of the number states of any 
other representation the vacuum state of the invariant represen-
tation may contain particles. Let us notice that the concept of 
particle is a local concept that is based on the definition of the 
particle detector and, thus, the number of detected particles is an 
observer-dependent quantity. In particular, for an observer that is 
making measurements in a local region of the spacetime, the most 
appropriate representation of the vacuum seems to be the vacuum 
of instantaneous Hamiltonian diagonalization [8], which represents 
the state of minimal excitation at a given moment of time. More 
concretely, an actual detector will only detect particles with wave-
length smaller than the characteristic length of the detector. We 
shall then show that such a detector will in practice detect no 
particles in a small local region of the spacetime because, as a con-
sequence of the boundary condition, the field modes remain there 
in the vacuum state along the entire evolution of the field. How-
ever, on cosmological grounds, the invariant vacuum turns out to 
be full of particle-antiparticle pairs of the diagonal representation, 
which are created in entangled states. We can then analyze the 
quantum state of each component of the entangled pair and their 
evolution separately.

The paper is outlined as follows. In Sect. 2 we briefly review 
the customary procedure of canonical quantization of a charged 
scalar field. In Sect. 3 we obtain the invariant representation of the 
associated Hamiltonian and define the invariant vacuum state. In 
Sect. 4 we apply the results to the case of a DeSitter spacetime and 
in Sect. 5 the same is done for a homogeneous and isotropic space-
time that evolves adiabatically. Finally, we summarize and draw 
some conclusions in Sect. 6.

2. Field quantization

Let us briefly summarize the standard procedure of canonical 
quantization for a charged scalar field, φ(x) = φ(x, t), by starting 
from the action integral

S =
∫

dtd3x L =
∫

dt L, (1)

with the Lagrangian density L given by [5,7,17,18]

L(x) = √−g
(

gμν∂μφ∂νφ∗ −
(

m2 + ξ R(x)
)

φ(x)φ∗(x)
)

, (2)

where m is the mass of the field and gμν is the metric tensor, 
with g ≡ det(gμν). The coupling between the scalar field and the 
gravitational field is represented by the term ξ Rφ2, where R(x) is 
the Ricci scalar. The value ξ = 0 corresponds to the so-called min-
imal coupling and the value ξ = 1

6 corresponds to the conformal 

coupling. Unless otherwise indicated, we shall assume minimal 
coupling (ξ = 0) but a similar procedure can be followed with any 
other value of ξ . The variational principle of the action (1) yields 
the field equation(�x + m2 + ξ R(x)

)
φ(x) = 0, (3)

where the d’Alembertian operator �x is given by [7]

�xφ = gμν∇μ∇νφ = 1√−g
∂μ

(√−g gμν∂νφ
)
. (4)

In particular, let us consider a homogeneous and isotropic space-
time with metric element given by

ds2 = dt2 − a2 dl2, (5)

where, a = a(t) is the scale factor and dl2 = hijdxidx j , is the metric 
element of the three dimensional space with the constant curva-
ture κ = 0, ±1. It is customary to work in conformal time η, and 
to scale the scalar field according to, φ = a−1χ . In that case, the 
modes of the field χ satisfy the wave equation of a harmonic oscil-
lator with constant mass and time dependent frequency. However, 
we shall work in cosmic time t and retain the charged scalar field 
φ(x, t) for at least for three reasons: i) the scaling is unnecessary 
for obtaining the invariant representation of the scalar field φ(x); 
ii) unlike in the wave equation of χ , the frequency of the wave 
equation of φ is always real, so we shall avoid imaginary values 
of the frequency of the modes; and, iii) the invariant representa-
tion of any two field variables is the same provided that they are 
related by a canonical transformation, i.e. the invariant represen-
tation of the field χ(x) is also the invariant representation of the 
field φ(x), so the vacuum state of the invariant representation is 
the same for both fields.

The isotropy of the spacetime described by the metric (5) al-
lows us to expand the field in Fourier modes

φ(x, t) =
∫

dμ(k)ψk(x)φk(t), (6)

where ψk are the eigenfunctions of the three-dimensional Lapla-
cian,


(3)ψk(x) = −(k2 − κ)ψk(x), (7)

and, k = |k| with k = {kx, ky, kz} with −∞ < ki < ∞ in the flat 
case, or just k in k = {k, l, m} with 0 < k < ∞, l = 0, 1, 2, . . . in the 
open case, k = 1, 2, . . . and l = 0, 1, . . . , k − 1 in the closed case, 
with −l ≤ m ≤ l in both cases, and dμ(k) is the measure of the 
Fourier space (see Refs. [4,5,7] for the details). With (6) and (7), 
integrating by parts and using the orthogonality properties of the 
functions ψk(x) [7], the Lagrangian in (1) turns out to be

L =
∫

dμ(k)M(t)
{
φ̇kφ̇∗

k − ω2
k (t)φkφ∗

k

}
, (8)

where, M(t) = a3(t),

ω2
k (t) = k2 − κ

a2
+ m2 + ξ R. (9)

The Lagrangian (8) is the Lagrangian of a set of harmonic oscilla-
tors with time dependent mass and frequency. Let us now proceed 
to quantize the field modes by writing [5,7,8]

φk(t) = 1√
2

(
vk(t)ak + (−1)κm v∗

k(t)b†
−k

)
, (10)

where, −k = {−kx, −ky, −kz}, in the flat case and, −k = {k, l, −m}
in the open and closed cases and, ψ∗

k = (−1)κmψ−k , for κ = 0, ±1. 
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