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We here conjecture that two much-studied aspects of quantum gravity, dimensional flow and spacetime 
fuzziness, might be deeply connected. We illustrate the mechanism, providing first evidence in support of 
our conjecture, by working within the framework of multifractional theories, whose key assumption is an 
anomalous scaling of the spacetime dimension in the ultraviolet and a slow change of the dimension in 
the infrared. This sole ingredient is enough to produce a scale-dependent deformation of the integration 
measure with also a fuzzy spacetime structure. We also compare the multifractional correction to lengths 
with the types of Planckian uncertainty for distance and time measurements that was reported in 
studies combining quantum mechanics and general relativity heuristically. This allows us to fix two free 
parameters of the theory and leads, in one of the scenarios we contemplate, to a value of the ultraviolet 
dimension which had already found support in other quantum-gravity analyses. We also formalize a 
picture such that fuzziness originates from a fundamental discrete scale invariance at short scales and 
corresponds to a stochastic spacetime geometry.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction and main goal

The landscape of quantum gravity (QG) looks like a varie-
gated compound of approaches that start from different concep-
tual premises and use different mathematical formalisms (see, e.g., 
Refs. [1–21]). Rather surprisingly, despite this heterogeneity, over 
the past few years a generic prediction has emerged: dimensional 
flow [22–39], i.e., a change of spacetime dimension with the scale 
of the observer. In all QG models, the dimensionality of spacetime 
exhibits a dependence on the scale, changing (or “flowing”) from 
the topological dimension D in the infrared (IR) to a different value 
in the ultraviolet (UV). So far, there has been no deep explanation 
for this universal property. Understanding its origin is just as im-
portant as looking for its physical characterization, needed to relate 
the flow of dimensions to physical observables.

We here put forward and motivate the conjecture that dimen-
sional flow is directly related to the presence of limitations on the 
measurability of distances close to the Planck length �Pl = √

Gh̄/c3, 
a feature (spacetime fuzziness) which has been of interest for QG 
research for decades [40–47]. More precisely, we shall provide pre-
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liminary “theoretical evidence” in support of a connection between 
the number of spacetime dimensions in the UV and the form of 
the uncertainty on spacetime distances. Important from our per-
spective is the fact that such a connection might set the stage for 
a role for dimensional flow in QG phenomenology [48]. Indeed, it 
has been shown that, in some cases, spacetime fuzziness could be 
investigated in ongoing and forthcoming experiments, even if the 
fuzziness is introduced at the Planck scale. This was first explored 
in analyses of the interferometers used for gravity-wave searches 
[48–50], and more recently is focusing mainly on the implications 
of fuzziness for the formation of halo structures in the images of 
distant quasars [48,51].

2. Example: multifractional theories

We provide preliminary support for our conjecture within the 
context of multifractional theories [25,52] fully reviewed in [53]. 
These are a class of field theories of matter and gravity where 
spacetime is “anomalous” and changes properties with the probed 
scale, in a way similar to a multifractal. While in other quantum 
gravities dimensional flow is a derived property not required a pri-
ori, here it is part of the definition of the framework. Thanks to 
their peculiar properties, these field theories living on a multifrac-
tal spacetime reproduce a wealth of phenomena found in QG. In 
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particular, the running of dimensions is produced by an integration 
measure of the type dDq(x) := dq0(x0)dq1(x1) · · ·dqD−1(xD−1) =
∂0q0dx0∂1q1dx1 · · · ∂D−1qD−1dxD−1. The factorizable form is as-
sumed for technical reasons [53] not especially important here, 
while the specific form of the distributions qμ(xμ) is obtained by 
requiring that dimensional flow is slow at large scales. This as-
sumption (spacetime dimension almost constant in the IR), true in 
all quantum gravities without known exception, is at the core of a 
result we will invoke often later, the second flow-equation theorem 
[52] (a “first” version holds for nonfactorizable measures). An ap-
proximation of the full measure, which is physically nonrestrictive 
but will be refined later, is the binomial space-isotropic profile

qμ(xμ) � (xμ − xμ) + �∗
αμ

∣∣∣∣ xμ − xμ

�∗

∣∣∣∣
αμ

, (1)

where the index μ is not summed over and takes values 0, 1, 2,

. . . , D − 1. For simplicity, we assume αμ = δ0μα0 + (1 − δ0μ)α, 
i.e., the exponents αμ �=0 associated with spatial directions have 
all the same value α; moreover, we also enforce 0 < α0, α < 1, 
to avoid negative dimensions and obtain the correct IR limit [53]. 
Note that (1) is uniquely determined parametrically as soon as di-
mensional flow is switched on and is slow (almost constant space-
time dimension) in the IR [52]. This means that different models of 
quantum gravity can predict different values of the parameters αμ

and �∗ (plus other parameters that appear in the full expression at 
mesoscopic scales [52]), but the general form of the measure as a 
parametric profile are the same and given by (1). The only ambigu-
ity left undecided by the second flow-equation theorem is a shift 
in the coordinates, represented by the given point xμ . This shift 
ambiguity is a puzzling aspect from the viewpoint of interpreta-
tion, since it is a sort of preferred point in the universe. However, 
our results will neutralize this feature and embed it into a more 
amenable physical interpretation. We will comment on this shortly.

Depending on the symmetries of the Lagrangian, there are four 
possible multifractional theories, classified according to the deriva-
tive operators appearing in kinetic terms. Here we will concen-
trate on two theories with the same asymptotic expression for 
lengths, with so-called q- and fractional derivatives. For the pur-
poses of this paper, suffice it to say that q-derivatives are defined 
as ∂qμ = (dqμ/dxμ)−1∂μ . Details on fractional derivatives are dis-
cussed in [53].

To get the Hausdorff dimensions dH of spacetime, one com-
putes the volume V of a D-cube with size edge �, leading to 
the result that, if α0 = α (as fixed by the arguments below), then 
V = ∫

cube dDq(x) � �D∗ [(�/�∗)D + (�/�∗)Dα]. Thus, we have dH � Dα
in the UV (� < �∗). Here we have neglected mesoscopic contribu-
tions to V , which are not relevant to get the number of dimensions 
in the far UV [54]. For the two multifractional theories considered 
here, it is not difficult to prove that, in the UV, the spectral dimen-
sion (the scaling of the return probability P ∼ �−dS measuring how 
likely it is to find a test particle in a neighborhood of its actual po-
sition when probing spacetime with an apparatus with resolution 
1/�) coincides with the Hausdorff dimension, dS � Dα � dH, for 
α0 = α [53]. Both α and �∗ are free parameters of the theory with 
the only requirement that �∗ must be small enough to comply with 
experimental constraints [53]. As said above, the measure qμ(xμ)

is fixed by the second flow-equation theorem [52], but there re-
mains an ambiguity related to the choice of a preferred frame, 
which amounts to the choice of xμ in Eq. (1). In fact, physical ob-
servables have to be compared in the picture with xμ coordinates 
representing clocks and rods that do not adapt to the scale. This 
poses the so-called presentation problem [29,53], which consists 
in the choice of the physical frame where Eq. (1) is defined and 
observables are calculated.

3. Connecting dimensional flow and fuzziness: first glimpse

As announced, we shall use multifractional theories as a testing 
ground for our conjecture. We shall seek a connection between 
dimensional flow in multifractional theories and the limitations on 
the measurability of spacetime distances obtained by many authors 
heuristically combining aspects of quantum mechanics (QM) and 
general relativity (GR) [41,44–47]. It is noteworthy that the pres-
ence of these distance-measurement uncertainties, though origi-
nally discussed exclusively with heuristic reasoning, has found con-
firmation in concrete QG theories in recent years (see, e.g., Refs. [1,
2]), each of which realizes the corresponding UV features in very 
different ways [22,23,25,53]. The observations we here report can 
also be viewed as an explanation of why one gets a correct intu-
ition about distance fuzziness even just resorting to the qualitative 
interplay of QM and GR. The link is provided by the fact that 
limitations on geometric measurements are intimately related to 
dimensional flow. As a byproduct of our analysis, we will also give 
a physical interpretation for the ambiguities of multifractional the-
ories and select two sets of preferred values for α and �∗ . Remark-
ably, in one of these cases, we obtain α = 1/2 and, consequently, 
dH � dS � 2 in the UV, a value that has already been singled out 
for independent reasons in many QG studies (see Refs. [11,16,17,
22,23,25,30,33–36] and references therein).

We focus on the (1 + 1)-dimensional theory with q-derivatives, 
a context where the analysis progresses more simply but without 
loss of any characteristic feature. Using Eq. (1), the reader can eas-
ily realize that the spatial distance between two points A and B
is

L :=
xB∫

xA

dq1 = � + 1

α

�∗
�

(∣∣∣∣ xB − x̄

�∗

∣∣∣∣
α

−
∣∣∣∣ xA − x̄

�∗

∣∣∣∣
α)

, (2)

with � = xB − xA. Thus, different presentations (i.e., different val-
ues of x̄ [29,53]) give different results for the distance, although 
they do not change the anomalous scaling, which is solely gov-
erned by α. Up to now, this has been regarded as a freedom of 
the model, but we here suggest that the presentation ambiguity 
should be viewed as a manifestation of spacetime fuzziness.

Four presentation choices have been identified as special among 
the others [29], but the second flow-equation theorem [52] selects 
only two of these: the initial-point presentation, where x̄ = xA, and 
the final-point presentation, where x̄ = xB. In both cases, Eq. (2)
simplifies in such a way that the difference between L and the 
value � that would be measured in an ordinary space is [29]

δLα � ±�∗
α

(
�

�∗

)α

, (3)

approximately valid in any space dimensions, where the plus sign 
is for the initial-point presentation and the minus is for the final-
point presentation.

Strikingly, the multifractional contribution to distances (3) is of 
the same type of the lower bound on distances found by heuris-
tically combining QM and GR arguments [41,44–47]. In particular, 
in Ref. [47], one of us proposed an argument leading to a minimal 
length uncertainty δL ∼

√
�2

Pl�/s, where s is a length scale charac-

terizing the measuring apparatus. Using a somewhat different line 
of reasoning, the authors of Ref. [46] suggested instead fluctua-

tions of magnitude ∼ (�2
Pl�)

1
3 . Both of these well-studied scenarios 

for distance fuzziness match quantitatively the multifractional con-
tribution to distances (3) upon adopting

α = 1

2
, �∗ = �2

Pl

s
, (4)
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