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Decoupling of heavy quarks at low energies can be described by means of an effective theory as shown by 
S. Weinberg in Ref. [1]. We study the decoupling of the charm quark by lattice simulations. We simulate 
a model, QCD with two degenerate charm quarks. In this case the leading order term in the effective 
theory is a pure gauge theory. The higher order terms are proportional to inverse powers of the charm 
quark mass M starting at M−2. Ratios of hadronic scales are equal to their value in the pure gauge theory 
up to power corrections. We show, by precise measurements of ratios of scales defined from the Wilson 
flow, that these corrections are very small and that they can be described by a term proportional to M−2

down to masses in the region of the charm quark mass.
© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In a field theory which contains light (mass-less) fields and 
fields of a heavy mass M , the functional integral over the latter can 
be performed resulting in an effective theory for the light fields 
which was formulated by Weinberg [1]. The action of the effective 
theory contains the action of the light fields (without the heavy 
fields) and an infinite number of non-renormalizable terms. The 
latter are suppressed by powers of E/M at low energies E � M . 
Moreover, the non-renormalizable couplings do not contribute to 
the renormalization group equations of the renormalizable cou-
plings of the light fields. This property holds for mass-independent 
renormalization schemes like the MS scheme as shown in [1]. The 
heavy fields still affect the value of the renormalized couplings of 
the light fields through the decoupling relations, which result from 
the matching of the effective and the fundamental theory at low 
energies.

Assuming the validity of perturbation theory at the matching 
scale, the decoupling relations can be computed perturbatively. In 
the case of QCD and one heavy quark, such as the charm or the 
bottom quark, the decoupling relation for the renormalized strong 
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coupling is known to four loops [1–4]. The strong coupling of the 
five-flavor theory can be extracted in this way from the coupling 
computed non-perturbatively in the three-flavor theory using lat-
tice simulations [5]. We remark that the decoupling relation for 
the strong coupling can be equivalently expressed as a relation 
between the � parameters of the effective and the fundamental 
theory [6].

Simulations of QCD on the lattice are often carried out with 
three light sea quarks [7–12]. The inclusion of a charm sea quark 
increases significantly the computational cost and introduces ad-
ditional tuning to set the bare quark masses on a line of con-
stant physics. Moreover, in the case of simulations with Wilson 
fermions, Symanzik O(a) improvement requires the computation of 
coefficients which multiplies terms proportional to the bare quark 
masses in lattice units am [13,14]. The contribution of these terms 
is significant for the charm quark amc > 0.3 at the affordable lat-
tice spacings a > 0.05 fm. Some of these coefficients, like the one 
of the gluon action, are difficult to extract non-perturbatively. Re-
lying on decoupling of the charm quark at low energies allows to 
simulate the cheaper and simpler effective theory with three fla-
vors only.

The applicability of decoupling for the charm quark has to be 
justified. In [6] this was studied in a model, QCD with two heavy 
mass-degenerate quarks and no light quarks. The decoupling of 
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the heavy quarks leave a pure gauge theory1 up to power cor-
rections (which are due to the non-renormalizable interactions) at 
low energies. The latter were extracted by computing low energy 
quantities related to the Wilson flow [16–19]. Ratios of two such 
quantities are insensitive to the matching of the gauge couplings, 
and after taking the continuum limit, can be compared to their 
counterparts in the pure gauge theory. The differences are due to 
the power corrections. By interpolating data obtained from simu-
lations at quark masses ranging from one eighth up to one half 
of the charm quark mass with data from simulations of the pure 
gauge theory, the size of the power corrections due to one sea 
charm quark was estimated to be at the sub-percent level [6].

In [6] it was noted that the simulated masses were not large 
enough to see the leading behavior of the power corrections which 
start at 1/M2 in the effective theory. Instead a behavior more like 
1/M was observed. In this article we study the same model as 
in [6] but extend the simulated quark masses to the charm quark 
mass and slightly above. Thus we can directly compute the size of 
the power corrections from decoupling of the charm quark. Fur-
thermore we perform a non-perturbative test of the validity of the 
effective theory of decoupling for the charm quark. Our goal is to 
determine whether the leading power corrections in the inverse 
heavy quark mass behave in the charm region as 1/M2.

The article is organized as follows. In Sect. 2 we briefly review 
the theoretical framework of the effective theory of decoupling for 
QCD with two heavy mass-degenerate quarks (in the continuum). 
Sect. 3 presents the details of the Monte Carlo simulations of this 
model formulated on the lattice. The results for the ratios of low 
energy quantities are presented in Sect. 4 and their dependence on 
the heavy quark mass is compared to the effective theory predic-
tion. The conclusions of our work are drawn in Sect. 5.

2. Decoupling

To avoid a multi-scale problem, we consider a simplified ver-
sion of QCD, namely an SU (3) Yang–Mills theory coupled to two 
degenerate heavy quarks. This allows us to perform simulations in 
relatively small volumes with very small lattice spacings, as we 
describe in Sect. 3. We briefly review the theoretical framework 
of decoupling specifically for our model. The fundamental theory 
is QCD with Nf = 2 mass-degenerate quarks. � is the Lambda pa-
rameter in the MS scheme and M is the renormalization group 
invariant (RGI) mass of the heavy quarks.2 After decoupling of the 
heavy quarks, what is left is a pure gauge theory. Therefore, the 
Lagrangian of the effective theory valid at energies E � M is given 
by [1,20]

Ldec = LYM + 1/M2
∑

i

ωi�i + O(�4/M4) . (1)

LYM is the Lagrangian of the SU (3) Yang–Mills (pure gauge) the-
ory. Due to gauge invariance there are no fields of mass dimension 
equal to five. A complete set of fields of mass dimension equal to 
six is �1 = tr {Dμ Fνρ Dμ Fνρ} and �2 = tr {Dμ Fμρ Dν Fνρ}, where 
Fμν is the SU (3) field strength tensor and Dμ Fνρ its covariant 
derivative.

At leading order the effective theory, eq. (1), is a Yang–Mills 
theory. It has only one free parameter, the renormalized gauge 

1 Perturbatively the simultaneous decoupling of two heavy quarks is known at 
three-loop order [15].

2 Throughout this work, the � parameter is defined in the MS scheme. For mass-

independent schemes like the MS, there is an exact one-loop relation for the �
parameters between different schemes. The RGI mass M is independent of the 
scheme (for mass-independent schemes).

coupling. This coupling is fixed by matching the effective theory 
to the fundamental theory. Equivalently one can fix the � pa-
rameter of the Yang–Mills theory, �YM, which becomes a function 
�YM = �dec(M, �), see [6,21]. Matching requires that low energy 
physical observables are the same in the two theories up to power 
corrections. Let us denote a low energy observable by mhad where, 
for example, it can represent a hadronic scale such as 1/

√
t0 [22]

or 1/r0 [23]. After matching

mhad(M) = mhad
YM + O(�2/M2) , (2)

where mhad(M) is the hadronic scale in QCD with Nf = 2 heavy 
quarks of mass M and mhad

YM is the hadronic scale in the Yang–Mills 
theory. Note that mhad

YM depends on M through the matching, in 
particular mhad

YM /�YM is a pure number independent of M . There-
fore we consider two hadronic scales, mhad,1(M) and mhad,2(M), 
whose values in the Yang–Mills theory are mhad,1

YM and mhad,2
YM re-

spectively. An immediate consequence of eq. (2) is

R(M) = mhad,1(M)

mhad,2(M)
= mhad,1

YM

mhad,2
YM

+ O(�2/M2) . (3)

The matching of the coupling is irrelevant for the ratios and we 
have direct access to the power corrections [24]. The effective the-
ory of decoupling predicts that the ratios like in eq. (3) are equal 
to their value R(M = ∞) in the Yang–Mills theory with a leading 
power correction in the inverse heavy quark mass given by

R(M) = R(∞) + k�2/M2 , (4)

where k is a parameter which depends on the hadronic scales 
which are taken to form the ratio. The goal of this work is to ver-
ify the behavior in eq. (4) and to establish whether it applies for 
masses around the charm quark mass.

3. Monte Carlo simulations

We simulate QCD with two mass-degenerate flavors of quarks 
(Nf = 2). Wilson’s plaquette gauge action [25] is employed in the
Yang–Mills sector and a doublet of quarks is realized either as 
standard or as twisted mass [26] Wilson quarks. In both cases a 
clover term [27,13] with non-perturbatively determined improve-
ment coefficient csw [28] is added. It is not needed for the O (a)

improvement of the twisted mass action at maximal twist, but was 
found to reduce the O (a2) lattice artifacts, see e.g. [29].

The bare coupling β of the gauge action was chosen such that 
the lattice spacings cover the range 0.023 fm � a � 0.066 fm. The 
lattice spacing is determined from the hadronic scale L1 [30,31]. 
The scale L1/a is defined at vanishing quark mass, where the stan-
dard and twisted mass Wilson quark formulations are equivalent. 
Therefore, the lattice spacing for a given bare coupling β is the 
same for both formulations. In order to obtain the scale L1 in lat-
tice units at a particular value of β , we fitted the data in Table 13 
of [31] as it is explained there. The lattice spacing in physical units 
is estimated by rescaling the value a = 0.0486 fm at β = 5.5 from 
[31] by the ratio of the L1/a values.

In order to resolve the short correlation lengths associated with 
the large quark masses that we aim at, we are forced to simulate at 
very small lattice spacings. Critical slowing down becomes a major 
obstacle which we alleviate by the implementation of open bound-
ary conditions in the time direction [32]. The boundary improve-
ment coefficients are kept at their tree-level values cG = 1 and 
cF = 1. The publicly available openQCD simulation program [33,
34] is used for our simulations.

We used standard O(a) improved Wilson quarks to simulate at 
quark masses of approximately a factor 1/8, 1/4 and 1/2 of the 
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