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The soft current describes the factorization behavior of quantum chromodynamics (QCD) scattering
amplitudes in the limit of vanishing energy of one of the external partons. It is process-independent
and can be expanded in a perturbative series in the coupling constant. To all orders in the dimensional
regularization parameter, we compute the two-loop correction to the soft current for processes involving
two hard partons.

© 2013 Published by Elsevier B.V.

In the limit where one or more massless partons are unre-
solved, amplitudes in quantum field theory factorize into lower-
point amplitudes with the unresolved partons removed, times
a universal function that is independent of the details of the hard
interaction and describes the emission of the unresolved particles.
This factorization property has multiple implications both for the
formal study of scattering in quantum field theory and for the
phenomenology of scattering processes at high-energy particle col-
liders. On the formal side, several conjectures on the high-order
behavior of perturbation theory and on the all-order structure of
the scattering matrix are formulated based on insights gained from
the limiting behavior in unresolved limits. In precision applications
of perturbation theory to collider phenomenology, systematic ex-
pansions around unresolved limits allow to approximate or recon-
struct higher-order coefficients in an elegant and computationally
efficient manner.

In particular, the emission of a soft gluon is entirely described
by the so-called soft current, an operator in color space that encap-
sulates all the information on the soft emission. In this Letter we
report on the computation of the two-loop soft current in QCD for
the emission of a single soft gluon from an amplitude involving
two hard colored particles.

Let us consider the amplitude |M(q, p1, . . . , pn)〉 (as vector in
color space) for a gluon with momentum q in association with n
colored particles with momenta pi , i = 1, . . . ,n, transforming in
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some irreducible representation of SU(N). The amplitude may de-
pend furthermore on an arbitrary number of colorless particles. In
the soft limit where the energy of the gluon vanishes, the ampli-
tude factorizes according to

〈
a
∣∣M(q, p1, . . . , pn)

〉 � εμ(q) J a
μ(q)

∣∣M(p1, . . . , pn)
〉
, (1)

where a denotes the adjoint color index of the soft gluon and
εμ(q) its polarization vector, and the ‘�’ sign indicates that the
equality only holds up to the leading term in the expansion in the
soft gluon momentum. Eq. (1) defines the (unrenormalized) soft
current J a

μ(q), which describes the emission of a soft gluon. Both
the soft current and the amplitude admit a perturbative expansion,

∣∣M(p1, . . . , pn)
〉 =

∞∑
�=0

∣∣M(�)(p1, . . . , pn)
〉
,

J a
μ(q) = gSμ

ε
∞∑

�=0

(
gSμ

ε
)2�

J a(�)
μ (q). (2)

We work in D = 4 − 2ε dimensions and gS denotes the bare QCD
coupling constant and μ is the scale introduced by dimensional
regularization. The tree-level soft current is given by the well-
known eikonal factor,

J a(0)
μ (q) =

n∑
i=1

T a
i

piμ

pi · q
, (3)

where T a
i denote the generators of SU(N) of the representation of

parton i. The one-loop correction was computed in Ref. [1],
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J a(1)
μ (q) = − Sε

16π2

1

ε2
Γ (1 − ε)Γ (1 + ε)i f abc

×
∑
i �= j

T b
i T c

j

(
piμ

pi · q
− p jμ

p j · q

)[
(−si j)

(−siq)(−sqj)

]ε

, (4)

with si j = 2pi · p j + i0 and

Sε = (4π)ε
Γ (1 + ε)Γ (1 − ε)2

Γ (1 − 2ε)
. (5)

We emphasize that the soft current is not a scalar quantity, but
an operator in color space, i.e., it acts non-trivially on the color in-
dices of the hard amplitude. While at tree and one-loop level, all
color operators involve at most two hard partons, starting from
two loops new color structures may appear that connect up to
three hard partons [2]. Non-trivial contributions from these new
color structures to the soft current cannot be excluded.

If we focus on processes with only two hard colored particles,
the color structure of the soft current drastically simplifies. In-
deed, color conservation in the hard amplitude implies that the
two hard partons must transform in complex conjugate represen-
tations. The color structure is then most conveniently described by
color-ordered helicity amplitudes,
∣∣M(q, p1, p2)

〉 = T a
i1i2

A(q, p1, p2), (6)

where the color-ordered amplitude A(q, p1, p2) depends on the
helicities and momenta of the colored particles, but not on their
color. In the limit where the gluon becomes soft, the color-ordered
amplitude factorizes,

A(q, p1, p2) � gSμ
εS±(q)rsoft(q)A(p1, p2). (7)

The helicity dependence of the soft emission is entirely encoded
into the tree-level soft function,

S+(q) = √
2

〈12〉
〈1q〉〈q2〉 and S−(q) = −√

2
[12]

[1q][q2] . (8)

Here 〈i j〉 and [i j] denote the usual spinor products, related to the
Mandelstam invariants by si j = 〈i j〉[ ji]. Quantum corrections to the
soft emission are helicity-independent and expressed in the scalar
function

rsoft(q) = 1 +
∞∑

�=1

{
g2

Sμ
2ε Sε

16π2

[
(−s12)

(−s1q)(−sq2)

]ε}�

r(�)

soft. (9)

The coefficients r(�)

soft are related to the soft current by

J a(0)
μ (q) Jμ(�)

a (q) = −4Ci

(
Sε

16π2

)�[
(−s12)

(−s1q)(−sq2)

]1+�ε

r(�)

soft, (10)

where Ci is the Casimir operator in the representation of the two
hard partons. Comparing Eq. (10) to Eq. (4) and performing the
color algebra, we immediately see that the one-loop coefficient is
given by

r(1)

soft = −N
Γ (1 − ε)Γ (1 + ε)

ε2
. (11)

The two-loop coefficient was computed in Ref. [3] up to O(ε0) by
considering the soft limit of the two-loop amplitudes for γ ∗ →
Q Q̄ g [4] and H → 3 partons [5]. For applications in precision cal-
culations, the soft current is to be integrated over the soft phase
space (giving rise to a double pole in the regularization parameter),
and is therefore required to O(ε2).

The two-loop coefficient r(2)

soft can be extracted from a given
two-loop amplitude involving two hard partons and a gluon. We

focus on the D-dimensional two-loop amplitude for γ ∗ → Q Q̄ g ,
interfered with the tree-level amplitude and summed over colors
and spins [6]. The matrix element is a function of the lightlike mo-
menta p1, p2 and q of the quark pair and the gluon. In the limit
where the gluon becomes soft, it factorizes according to,

〈
M(0)

3

∣∣M(2)
3

〉 � −g2
Sμ

2ε
2∑

�=0

(
g2

Sμ
2ε

)�〈M(0)
2

∣∣ J a(0)
μ Jμ(�)

a

∣∣M(2−�)
2

〉
.

(12)

The two-loop coefficient r(2)

soft can then directly be extracted by ex-
panding in the soft gluon momentum.

If we denote the virtuality of the photon by Q 2 = (p1 + p2 +
q)2, then (up to some overall power of Q 2) the matrix element
〈M(0)

3 |M(2)
3 〉 can only depend on the Lorentz-invariant dimension-

less ratios

x = s12

Q 2
, y = s1q

Q 2
, z = s2q

Q 2
, (13)

subject to the constraints

x + y + z = 1 and 0 < x, y, z < 1. (14)

Without loss of generality, we set Q 2 = 1 in the following. The
soft limit is then approached when both y and z tend to zero at
the same rate. Our goal is thus to expand the matrix element into
a power series in y and z while keeping the dependence of the co-
efficients on the dimensional regulator ε exact. The leading term of
the expansion then corresponds to the right-hand side of Eq. (12).

The two-loop amplitude for γ ∗ → Q Q̄ g can be written as
a linear combination of scalar four-point master integrals with one
external massive leg [7,8]. In the following we denote the master
integrals collectively by Fi(y, z;ε). The master integrals themselves
satisfy a system of coupled differential equations that can schemat-
ically be written as

∂

∂ y
Fi(y, z;ε) = A y

ij(y, z;ε)F j(y, z;ε),

∂

∂z
Fi(y, z;ε) = Az

i j(y, z;ε)F j(y, z;ε), (15)

where Ak
ij(y, z;ε), k ∈ {y, z}, are rational functions of y, z and ε .

Solutions to Eqs. (15) valid to all orders in ε are only available in
a few special cases [7]. Laurent expansions in ε were obtained for
all master integrals up to O(ε0) in terms of harmonic polyloga-
rithms and their two-dimensional generalization [8]. These results
yield the two-loop amplitude for γ ∗ → Q Q̄ g up to O(ε0). Ex-
panding the two-dimensional harmonic polylogarithms as power
series in y and z immediately reproduces the known result for
r(2)

soft up to O(ε0) [3].

To obtain the two-loop coefficient r(2)

soft to all orders in ε , we
return to the differential equations (15) and construct for each
master integral a power series solution in y and z close to the
origin (y, z) = (0,0) in the (y, z) plane. The differential equa-
tions may, however, have poles whenever y or z vanish, trans-
lating into branching points for the master integrals starting from
points where one of the two expansion parameters is zero. In other
words, the solutions to Eq. (15) are not meromorphic in a neigh-
borhood of the origin of the (y, z) plane, and so we cannot make
a simple Laurent series ansatz in y and z for the master integrals.
The correct ansatz for each master integral rather takes the form

Fi(y, z;ε) =
2∑

m,n=0

y−mε z−nε f i,mn(y, z;ε), (16)
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