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Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams are studied
through a finite element approach. The exact shape functions for uniform homogeneous Timoshenko
beam elements are used to formulate the proposed element. The accuracy of the present element is con-
siderably improved by considering the exact variations of cross-sectional profile and mechanical proper-
ties in the evaluation of the structural matrices. Carrying out several numerical examples, the
convergence of the method is verified and the effects of taper ratio, elastic constraint, attached mass
and the material non-homogeneity on the natural frequencies and critical buckling load are investigated.
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1. Introduction

Functionally graded (FG) materials have received great interest
from engineers and researchers due to their specific characteristics
such as high stiffness and thermal resistance. FG materials are
formed by varying percentage content of materials in any desired
spatial direction; as a result, the mechanical properties of the
new material would show gradation in that direction which could
be formulated using different theories among which the most re-
nowned ones are exponential [1] and power laws [2]. Reviewing
the literature, it is understood that most of the previous works
on FG beams have considered the gradation of material properties
in thickwise direction [3-5] and relatively few researchers [6-16]
have studied the structural behavior of those types of FG beams
whose material properties vary in lengthwise direction. Recent
works on axially FG beams have considered Euler-Bernoulli beam
theory (EBT). It is well understood that EBT [17-21] neglects the ef-
fects of shear deformation and rotary inertia while Timoshenko
beam theory (TBT) takes these effects into account. Therefore, long
slender beams could be efficiently modeled by EBT since the flex-
ural behavior is dominant while application of EBT leads to great
inaccuracy in modeling of short thick beams, where the shear
deformations are of more significance. Moreover, it is well known
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that TBT presents a more realistic model of the beam in determina-
tion of the higher modes of vibration.

Non-prismatic beams, i.e. those beams whose cross-sectional
profile changes gradually or abruptly along their length are of great
importance in different fields of engineering due to their ability in
meeting the architectural and aesthetical needs and optimizing the
weight and strength of the structure. This particular advantage of
non-prismatic members, i.e. optimization of weight and strength,
plays a very important role in construction and performance of
aerospace structures. The key problem in analysis of tapered Tim-
oshenko beams is the presence of variable coefficients in the gov-
erning differential equations introduced by variable cross-sectional
area and moment of inertia. Due to this problem, there are closed-
form solutions for neither free vibration nor stability of Timo-
shenko beams with an arbitrarily variable cross-section. Thus,
numerical methods have been used among which finite element
method has gained a more prominent position [22-25]. Analysis
of tapered Timoshenko beams with arbitrary distributions of mate-
rial properties along the beam axis are more complicated than the
tapered Timoshenko beams since the variable material properties,
in addition to the previously mentioned variable coefficients, show
up in the governing differential equations. There are relatively few
works [26-28] in the literature on the axially FG tapered Timo-
shenko beams. Tong et al. [26] modeled a tapered non-homoge-
neous Timoshenko beam as an assemblage of several uniform
homogeneous segments, but they used their method to study the
vibration characteristics of tapered Timoshenko beams with con-
stant material properties. Sorrentino et al. [27] studied the effects
of generalized damping on the non-homogeneous Timoshenko
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beams. Sklyar and Szkibiel [28] studied the controllability of a
slowly rotating non-homogeneous Timoshenko beam.

To the authors’ best knowledge, the stability analysis of axially
FG tapered Timoshenko beams has not been performed previously
and there is still a gap in the literature on the structural analysis of
these beams and the effects of material non-homogeneity and ta-
per ratio on their structural behavior. In this paper, finite element
method is applied to study the free vibration and stability of these
structural members. The most important part of a finite element
formulation is the selection of shape functions, i.e. functions which
interpolate the displacement field within an element. In this paper,
the exact shape functions of a uniform homogeneous Timoshenko
beam element are used to formulate the axially FG tapered Timo-
shenko beam element. This set of shape functions will propose an
inaccuracy in the results; however this inaccuracy is lessened by
considering the exact variation of cross-sectional profile and the
mechanical properties in evaluation of the structural matrices.
The present element could be used for modeling Timoshenko
beams with any type of cross-sectional variations and gradations
of material properties along the beam element; hence it could be
used for most of engineering applications dealing with such beams.

The objective of the paper is to introduce a beam element which
could be used to fill the present gap in the literature on axially FG
tapered Timoshenko beams and present an insight into the struc-
tural behavior of these structural members. In the following, the
structural model is firstly explained and afterwards the finite ele-
ment formulations are presented. Finally numerical examples are
provided to check the competency of the proposed element.

2. Structural model

Following the Timoshenko beam theory, the axial and trans-
verse displacement fields are respectively given as

Ux,y,z,t) = —z0(x,t) (1a)
W(meazz t) = W(X7 t) (1b)

where x, y and z are the spatial coordinates as shown in Fig. 1, t is
time, 6 and w are respectively the bending rotation and the trans-
verse displacement. Assuming that the beam element is subject to
a constant compressive load P, the axial and shear strains are
respectively obtained using Eq. (1) as,

b= 220 L 1 (WY’ (2a)
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/xz*a—(’ (2b)

The stresses could be readily given in terms of strains as
Oxx = E(X)éxx (3a)
Txz = G(X)yxz (3b)

where g, and 7, are respectively the axial and shear stresses, E and
G are respectively the Young’'s modulus and the shear modulus
which are both functions of longitudinal coordinate, x, to account
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X

Fig. 1. Spatial coordinate system and the displacement field.

for the axial gradation of the material properties. Moreover, the
strain energy and kinetic energy of the beam element could be writ-
ten respectively as

1
U= 1 / /(axxaxx + Tw),, ) dAdX (4a)
2 0 JA

T:%/I/p(x)(Uz—s—Wz)dAdx (4b)
0 A

Here the dot (-) stands for differentiation with respect to time, [ is
the element length, A is the cross-sectional area, p is the mass
density which is a function of longitudinal coordinate due to the
lengthwise gradation of the material. Applying Hamilton’s princi-
ple [29], the following governing differential equations are
obtained

2

% <E(x)1(x) %) + KG(X)A(x) <<z_\;v - 0> — px)I(x) % =0 (5a)
2

% {KC(X)A(X) (% - 0)} - 6% (P%—Z{V) - p(x)A(x)%—t‘g/ =0 (5b)

Here I is the moment of inertia and x is the shear correction
factor which depends on the shape of the cross-section. Assum-
ing sinusoidal variations for transverse displacement and bend-
ing rotation with circular frequency w and using Eq. (5), the
governing differential equations for free lateral vibration are at-
tained as

% (E(x)](x) %) + KG(X)A(X) <%{V - 0> + p)I(x)w?0 =0 (6a)

% {KG(X)A(X) <C;—‘;" - 0)} —% (P‘(%’) +pMAX)*W=0  (6b)

It is well known that the transverse natural frequency vanishes
when the axial compressive load equals critical load (P, ); that is, w
is set to zero in stability analysis. Therefore, the following equation
is derived directly from Eq. (6) for determination of critical buck-
ling load.

d* do d 1 d do
2 (Beone0 ) + P [0~ g 4 (B0 )|

-0 (7)

3. Finite element formulation

As it was previously mentioned, Eqgs. (6) and (7) do not have
closed-form solutions due to the variable coefficients, thus the
exact shape functions could not be determined. In this paper, the
exact shape functions of homogeneous and isotropic uniform Tim-
oshenko beams are used. These shape functions are given as [29].

Transverse Shape Functions:

)
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Bending Rotation Shape Functions:
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the value of the parameter in the homogeneous and isotropic
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