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We obtain the bound on the Higgs and top masses to have Higgs inflation (where the Higgs field is non-
minimally coupled to gravity) at full next-to-next-to-leading order (NNLO). Comparing the result obtained
with the experimental values of the relevant parameters we find some tension, which we quantify. Higgs
inflation, however, is not excluded at the moment as the measured values of the Higgs and top masses
are close enough to the bound once experimental and theoretical uncertainties are taken into account.
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1. Introduction

The discovery of the Higgs boson [1,2] has allowed to fix the
last Standard Model (SM) parameter, the Higgs mass. Making the
strong but certainly economical assumption that the SM (appropri-
ately extended to accommodate neutrino masses and dark matter)
remains valid up to the Planck scale, it is now possible to obtain
precise predictions in this vast energy range.

Ref. [3] argued that even the inflationary period of the Universe
can be explained within the SM and the Higgs field and the infla-
ton can be identified if the term
√−gξ H† H R, (1)

with ξ � 1, is added to the Einstein–Hilbert plus SM Lagrangian
LE–H +LSM , so that the total Lagrangian is

Ltotal = LE–H +LSM + √−gξ H† H R. (2)

Here R is the Ricci scalar, H is the Higgs doublet and g is the
determinant of the metric gμν .

An inflaton with a non-minimal coupling of the form given
in (1), and in particular Higgs inflation, is perfectly consistent with
recent Planck results [4], which favor a simple single field inflation.

All this reinforces the interest in the possibility of Higgs infla-
tion.

The non-minimal coupling in (1) can be eliminated by a redef-
inition of gμν (going to the so called Einstein frame), which leads
to a non-polynomial Lagrangian for H . This redefinition shows that
two regimes are present in the theory [5]: the small field one
|H | � M P /ξ , where the canonical SM is a good description, and
the large field limit |H | � M P /ξ , in which the physical Higgs mode

decouples. Therefore, the latter limit corresponds to the chiral elec-
troweak (EW) theory [6].

As we will review in Section 2, at the classical level this is a
viable model of inflation if the non-minimal coupling ξ is cho-
sen to match cosmic microwave background (CMB) observations.
Quantum corrections may, however, render inflation impossible de-
pending on the input parameters at the EW scale, in particular the
Higgs and top pole masses Mh and Mt : if Mh is too small (or Mt

is too large) the slope of the Higgs effective potential at large field
values becomes negative preventing the field configuration to roll
towards the EW vacuum.

In this Letter we improve on previous determinations [5] of the
lower bound on the Higgs mass (or equivalently the upper bound
on the top mass) to have Higgs inflation by using the follow-
ing ingredients: (1) two loop effective potential in the inflationary
regime including the effect of ξ and the leading SM couplings: the
top Yukawa yt , the strong gauge coupling g3, the EW gauge cou-
plings g2 and g1 and the quartic Higgs coupling λ; (2) three loop
SM renormalization group equations (RGE) from the EW scale up
to M P /ξ for yt , g3, g2, g1 and λ including the effects of all these
couplings; (3) two loop RGE for the same SM couplings and one
loop RGE for ξ in the chiral EW theory; (4) recent precise deter-
minations of these SM couplings at the top mass provided in [7],
which are used as initial conditions for the RGE.1

A detailed description of these ingredients is provided in Sec-
tion 3. In Section 4 we present our numerical results, including the

1 See, however, Ref. [8] for a related possible issue if conformal invariance is re-
quired.
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determination of ξ and the lower bound on Mh (or Mt ). Finally in
Section 5 we conclude.

2. Classical analysis

Let us briefly review the model of [3] at the classical level. The
part of the action in (2) that depends on the metric and the Higgs
field only is

S g H =
∫

d4x
√−g

[(
M2

P

2
+ ξ H† H

)
R + |∂ H|2 − V

]
,

where M P � 2.435 × 1018 GeV is the reduced Planck mass, V =
λ(H† H − v2/2)2 is the classical Higgs potential, and v is the EW
Higgs vacuum expectation value.

The non-minimal coupling (1) can be eliminated through the
conformal transformation

gμν → ĝμν ≡ Ω2 gμν, Ω2 = 1 + 2ξ H† H

M2
P

. (3)

The original frame, where the Lagrangian has the form in (2), is
called the Jordan frame, while the one where gravity is canonically
normalized (obtained with the transformation above) is called the
Einstein frame. In the unitary gauge, where the only scalar field is
the radial mode φ ≡ √

2H† H , we have (after the conformal trans-
formation)

S g H =
∫

d4x
√

−ĝ

[
M2

P

2
R̂ + K

(∂φ)2

2
− V

Ω4

]
, (4)

where K ≡ (Ω2 + 6ξ2φ2/M2
P )/Ω4. The non-canonical Higgs ki-

netic term can be made canonical through the field redefinition
φ = φ(χ) defined by

dχ

dφ
=

√
Ω2 + 6ξ2φ2/M2

P

Ω4
. (5)

Thus, χ feels a potential

U ≡ V

Ω4
= λ(φ(χ)2 − v2)2

4(1 + ξφ(χ)2/M2
P )2

. (6)

From (5) and (6) it follows [3] that U is exponentially flat when
χ � M P , which is a key property to have inflation. Indeed, for
such high field values the parameters

ε ≡ M2
P

2

(
1

U

dU

dχ

)2

, η ≡ M2
P

U

d2U

dχ2
,

ζ 2 ≡ M4
P

U 2

d3U

dχ3

dU

dχ
(7)

are guaranteed to be small. Therefore, the region in field configu-
rations χ > M P (or equivalently [3] φ > M P /

√
ξ ) corresponds to

inflation.
All the parameters of the model can be fixed through experi-

ments and observations, including ξ [3,9], so that Higgs inflation
is highly predictive and as such falsifiable. ξ can be fixed by re-
quiring that the WMAP normalization of [10],

U

ε
= 24π2
2

R M4
P � (0.02746M P )4, (8)

is reproduced for a field value φ = φWMAP corresponding to an ap-
propriate number of e-foldings [9]:

N =
φWMAP∫
φend

U

M2
P

(
dU

dφ

)−1(dχ

dφ

)2

dφ � 59, (9)

where φend is the field value at the end of inflation,

ε(φend) � 1. (10)

This procedure leads to ξ � 4.7 × 104
√

λ, which is why ξ has to
be much larger than one.

We can also extract the spectral index ns , the tensor-to-scalar
ratio r and the running spectral index dns/d ln k:

ns = 1 − 6ε + 2η,

r = 16ε,

dns

d ln k
= 16εη − 24ε2 − 2ζ 2. (11)

These parameters are of interest as they are constrained by obser-
vations [4].

3. Quantum corrections

We now turn to the quantum corrections. We will use perturba-
tion theory to compute them. It is important to keep in mind that
perturbative unitarity2 is violated above some high energy scale
[11,12]. Once the background fields are taken into account, how-
ever, one can show [13] that such energy is parametrically higher
than all relevant scales during the history of the Universe. Never-
theless some additional assumptions on the underlying ultraviolet
complete theory are necessary (see [12–14]).

There are two options for the quantization of the classical the-
ory defined before: one can either first perform the transformation
in (3) and then quantize [3] (prescription I) or first quantize and
then perform the conformal transformation (prescription II) [16].
The two options lead to different theories as they have different
predictions [5]. We choose the first possibility because Ref. [5]
found it to be the one leading to the weaker bound on Mt and
such bound, as we will see, is already giving some tension with
the experiments. We will make some more comments on prescrip-
tion II at the end of Section 4, where we will check that it is
indeed leading to a stronger bound even at full NNLO.

The procedure to compute quantum corrections has been intro-
duced in [5]: we briefly summarize it in the following subsections
giving both the order of approximation reached in [5] and our im-
provements.

3.1. Effective potential

The first element that we need is the (quantum) effective po-
tential for χ , which is expanded in loops as

Ueff = U + U1 + U2 + · · · .
Here U is the classical contribution in Eq. (6) and U1, U2, . . . are
the one loop, two loop, . . . contributions respectively. An obser-
vation that leads to useful simplifications is that we only need
Ueff in the inflationary regime. Also, further simplifications can
be achieved with a judicious gauge choice; we choose the Landau
gauge.

2 This unitarity problem can be solved by adding an extra real scalar field [15].
The extension of the present analysis to include such scalar is beyond the scope of
this Letter.
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