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According to the Hugenholtz–Van Hove theorem, nuclear symmetry energy Esym(ρ) and its slope L(ρ)

at an arbitrary density ρ are determined by the nucleon isovector (symmetry) potential Usym(ρ,k) and

its momentum dependence ∂Usym
∂k . The latter determines uniquely the neutron–proton effective k-mass

splitting m∗
n−p(ρ, δ) ≡ (m∗

n − m∗
p)/m in neutron-rich nucleonic matter of isospin asymmetry δ. Using

currently available constraints on the Esym(ρ0) and L(ρ0) at normal density ρ0 of nuclear matter from
28 recent analyses of various terrestrial nuclear laboratory experiments and astrophysical observations,
we try to infer the corresponding neutron–proton effective k-mass splitting m∗

n−p(ρ0, δ). While the
mean values of the m∗

n−p(ρ0, δ) obtained from most of the studies are remarkably consistent with each
other and scatter very closely around an empirical value of m∗

n−p(ρ0, δ) = 0.27 · δ, it is currently not
possible to scientifically state surely that the m∗

n−p(ρ0, δ) is positive within the present knowledge of
the uncertainties. Quantifying, better understanding and then further reducing the uncertainties using
modern statistical and computational techniques in extracting the Esym(ρ0) and L(ρ0) from analyzing
the experimental data are much needed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ultimate goal of investigating properties of neutron-rich nu-
cleonic matter through terrestrial nuclear laboratory experiments
and astrophysical observations is to understand the underlying
isospin dependence of strong interaction in nuclear medium [1].
The Equation of State (EOS) of neutron-rich nucleonic matter can
be written within the parabolic approximation in terms of the
binding energy per nucleon at density ρ as E(ρ, δ) = E(ρ, δ = 0)+
Esym(ρ)δ2 +O(δ4) where δ ≡ (ρn − ρp)/(ρp + ρn) is the neutron–
proton asymmetry and Esym(ρ) is the density-dependent nuclear
symmetry energy. The latter has important applications in many
areas of both nuclear physics, see, e.g., Refs. [2–8] and astrophysics,
see, e.g., Refs. [9–11]. However, the density dependence of nu-
clear symmetry energy has been among the most uncertain prop-
erties of neutron-rich nucleonic matter. Predictions using various
many-body theories and interactions diverge quite broadly espe-
cially at abnormal densities. It is thus exciting to see that signifi-
cant progress has been made recently in constraining the Esym(ρ)

around ρ0, see, e.g., Ref. [12] based on model analyses of experi-
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mental and/or observational data. In particular, as listed in Table 1
and also shown in Fig. 1 at least 28 studies have extracted the
slope L(ρ0) ≡ [3ρ(∂ Esym/∂ρ)]ρ0 and Esym(ρ0) at ρ0 [13–43]. It is
thus interesting to ask timely what we can learn about the isospin
dependence of in-medium nuclear interaction from the extracted
constrains on L(ρ0) and Esym(ρ0). Here we study this question
at the mean-field level by using a formulism developed earlier in
Refs. [29,44,45] based on the Hugenholtz–Van Hove (HVH) the-
orem [46]. Specifically, we try to infer both the magnitude of
the symmetry potential Usym(ρ0,kF ) and the neutron–proton ef-
fective k-mass splitting m∗

n−p(ρ0, δ) corresponding to each of the
28 constraints on Esym(ρ0) and L(ρ0) at ρ0. The consistency of
the extracted values for Usym(ρ0,kF ) and m∗

n−p(ρ0, δ) from vari-
ous constraints is then examined. It is found that while the mean
values of the Usym(ρ0,kF ) and m∗

n−p(ρ0, δ) from different studies
are consistent with each other and most of them scatter closely
around Usym(ρ0,kF ) = 29 MeV and m∗

n−p(ρ0, δ) = 0.27 · δ, respec-
tively, the individual uncertainties from many analyses are still too
large. Quantifying, better understanding and reducing the uncer-
tainties in extracting the symmetry energy from model analyses of
the experimental data are much needed in order to use reliably
the extracted mean values of the Usym(ρ0,kF ) and m∗

n−p(ρ0, δ) in
solving many important problems in both nuclear physics and as-
trophysics.
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Table 1
Constrained values of Esym(ρ0) and L(ρ0) from 28 analyses of terrestrial nuclear experiments and astrophysical observations.

Analysis Esym(ρ0) L(ρ0) Ref.

Thomas–Fermi model analysis of masses (Myers 1996) 32.65 50 [13]
Atomic masses (Liu 2010) 31.1 ± 1.7 66 ± 13 [14]
Liquid drop model analysis of atomic masses (Lattimer 2012) 29.6 ± 3. 46.6 ± 37 [15]
FRDM analysis of atomic masses (Moller 2012) 32.5 ± 0.5 70 ± 15 [16]
Atomic masses and n-skin of Sn isotopes (Chen 2011) 30.5 ± 3 52.5 ± 20 [17]
Atomic masses and n-skin in an empirical approach (Agrawal 2012) 32.1 64 ± 5 [18]
IAS + n-skin (Danielewicz and Lee 2013) 31.95 ± 1.75 52.5 ± 17.5 [19]
SHF + n-skin (Chen 2010) 30.5 ± 5.5 41 ± 41 [20]
Droplet Model + n-skin (Centelles and Warda 2009) 31.5 ± 3.5 55 ± 25 [21,22]
IBUU04 analysis of isospin diffusion at 50 MeV/A (Chen and Li 2005) 31.6 86 ± 25 [23,24]
IQMD analysis of isospin diffusion at 50 MeV/A (Tsang 2009) 32.5 ± 2.5 77.5 ± 32.5 [25,26]
IQMD analysis of isospin diffusion at 35 MeV/A (Sun 2010) 30.1 52 [27]
Isoscaling analysis of fragments (Shetty 2007) 31.6 65 [28]
Global nucleon optical potential (Xu 2010) 31.3 ± 4.5 52.7 ± 22.5 [29]
Pygmy dipole resonances (Klimkiewicz 2007) 32 ± 1.8 43 ± 15 [30]
Pygmy dipole resonances (Carbone 2010) 32 ± 1.3 65 ± 16 [31]
AMD analysis of transverse flow (Kohley 2010) 30.5 65 [32]
α-decay energy (Dong 2013) 31.6 ± 2.2 61 ± 22 [33]
β-decay energy (Dong 2013) 32.3 ± 1.3 50 ± 15 [34]
Mass differences and n-skin (Zhang 2013) 32.3 ± 1.0 45.2 ± 10 [35]
Dipole polarizability of 208Pb (Tamii 2013) 30.9 ± 1.5 46 ± 15 [36]
r-mode instability of neutron stars (Vidana 2012) 30. ± 5 � 50 [37]
r-mode instability of neutron stars (Wen 2012) 32.5 ± 7.5 � 65 [38]
Mass-radius of neutron stars-analysis 1 (Steiner 2010) 31 ± 3 50 ± 10 [39]
Mass-radius of neutron stars-analysis 2 (Steiner 2012) 33 ± 1.6 46 ± 10 [40]
Torsional crust oscillation of neutron stars (Gearheart 2011) 32.5 ± 7.5 � 50 [41]
Torsional crust oscillation of neutron stars (Sotani 2012) 32.5 ± 7.5 115 ± 15 [42]
Binding energy of neutron stars (Newton 2009) 32.5 ± 7.5 � 70 [43]

2. Relationship between neutron–proton effective mass splitting
and symmetry energy based on the Hugenholtz–Van Hove
theorem

According to the well-known Lane potential [47] verified by
various many-body theories and optical model analysis of nucleon–
nucleus scattering data, the neutron/proton (n/p) single-particle
potential Un/p(ρ,k, δ) can be well approximated by

Un/p(ρ,k, δ) = U0(ρ,k) ± Usym(ρ,k) · δ +O
(
δ2), (1)

where the U0(ρ,k) and Usym(ρ,k) are, respectively, the nucleon
isoscalar and isovector (symmetry) potentials for nucleons with
momentum k in asymmetric nuclear matter of isospin asymmetry
δ at density ρ . Their momentum dependence is normally charac-
terized by the nucleon effective k-mass

m∗
τ /m =

[
1 + m

h̄2kF

dUτ

dk

∣∣∣∣
kF

]−1

(2)

where τ = n, p and 0 for neutrons, protons and nucleons, respec-
tively, and m = (mn + mp)/2 is the average mass of nucleons in
free-space. While the nucleon isoscalar potential and its momen-
tum dependence, especially at ρ0, have been relatively well de-
termined, our knowledge about the isovector potential Usym(ρ,k)

and its momentum dependence ∂Usym
∂k even at normal density is

still very poor. However, from the structure of rare isotopes and
mechanism of heavy-ion reactions to the cooling of protoneutron
stars, solutions to many interesting issues depend critically on the
nucleon isovector potential and its momentum dependence.

Using the Brueckner theory [48] or the Hugenholtz–Van Hove
(HVH) theorem [46], the Esym(ρ) and L(ρ) can be expressed as
[29,44,45,49]

Esym(ρ) = 1

3

h̄2k2
F

2m∗
0

+ 1

2
Usym(ρ,kF ), (3)

L(ρ) = 2

3

h̄2k2
F

2m∗
0

+ 3

2
Usym(ρ,kF ) + ∂Usym

∂k

∣∣∣∣
kF

kF , (4)

where kF = (3π2ρ/2)1/3 is the nucleon Fermi momentum. We
emphasize that these relationships are general and independent
of the many-body theory and/or interaction used to calculate the
Usym(ρ,k) and m∗

0. In fact, all microscopic calculations of the nu-
clear EOS are required to satisfy the HVH theorem. It is also
worth noting that adding the second-order symmetry potential
Usym,2(ρ,k) · δ2 term to the Lane potential in Eq. (1) and consider-
ing the δ2 terms consistently in applying the HVH theorem, while
the expression for the Esym(ρ) remains the same as in Eq. (3),
the expression for L(ρ) has two additional terms due to the mo-
mentum dependence of the isoscalar effective mass m∗

0 and the
Usym,2(ρ,kF ), respectively [45]. However, at the saturation den-
sity ρ0 these high-order terms were found completely negligible
based on the optical model analyses of the latest and most com-
plete neutron-nucleus scattering data base [50]. Thus, at least at ρ0
Eqs. (3) and (4) are accurate decompositions of the symmetry en-
ergy and its density slope required by the HVH theorem. While it
is not clear if all models satisfy the HVH theorem and the resulting
equations (3) and (4), it is understandable that various observables
may be sensitive to different components of the Esym(ρ) and L(ρ)

with different sensitivities, leading to the rather broad ranges of
uncertainties and/or error bars in the results shown in Table 1 and
Fig. 1. It is certainly an interesting task to find out for each ob-
servable whether/why it may only depend on the total values or
some particular components of the Esym(ρ) and/or L(ρ). We no-
tice that not all models used in extracting the Esym(ρ0) and L(ρ0)

consider all the terms of the Esym(ρ)and L(ρ) in Eqs. (3) and (4).
For instance, while most models consider the momentum depen-
dence of the isoscalar potential albeit often use different values for
the m∗

0, the momentum dependence of the isovector potential, i.e.,

the ∂Usym
∂k term, has been frequently ignored so far. It may well be

that some of the observables are not sensitive to this component of
the L(ρ) but still allow an accurate extraction of the Esym(ρ0) and
L(ρ0) within the framework of a given model used. In this work,
we use the 28 sets of Esym(ρ0) and L(ρ0) as quasi-data regardless
how they were extracted from the model analyses of experimental
data. Since the expressions for Esym(ρ) and L(ρ) in Eqs. (3) and (4)
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