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In the context of Einstein–Cartan theory of gravity, we consider a Friedmann–Lemaitre–Robertson–Walker
(FLRW) cosmological model with Weyssenhoff perfect fluid. We focus attention on those classical solu-
tions that admit a degenerate metric in which the scale factor has smooth behavior in the transition
from a Euclidean to a Lorentzian domain. It is shown that the spin–spin contact interaction enables one
to obtain such a signature changing solutions due to the Riemann–Cartan (U4) structure of space–time.
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1. Introduction

The study of cosmology has always been influenced by the
choice of the matter field used to construct the energy–momentum
tensor in Einstein field equations. The most widely used matter
source has traditionally been the perfect fluid. However, the ubiq-
uitous scalar field has also been playing an increasingly important
role in more recent cosmological models as the matter source [1].
This of course is not surprising since it being a scalar field makes it
somewhat easy to work with. One may also conceivably imagine a
Universe filled with massless or massive spinor fields as the matter
source. Such cosmological models have seldom been studied in the
literature and, when they were, it was more often than not in the
form of general formalisms [2]. In general then, it would be fair to
say that cosmologies with spinor fields as the matter source are
the least studied scenarios. In 1923 Élie Cartan introduced the re-
lation between the intrinsic angular momentum of matter and the
space–time torsion in the framework of a generalization of gen-
eral relativity (GR) [3], nowadays known as Einstein–Cartan (EC)
theory [4]. Indeed, the classical spin may be introduced in GR in
two distinct ways. In the first approach, spin is considered as a
dynamical quantity without changing the Riemannian structure of
the space–time geometry [5]. The second method, which as we
mentioned above was proposed by Cartan, is based on the gen-
eralization of space–time structure by assuming the metric and
the non-symmetric affine connection as independent quantities.
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Since the first attempts of Cartan to bring spin into the curved
space–time, many efforts have been made in this area and the cor-
responding results have been followed and developed by a number
of works, see for instance [6–8]. The importance of the Cartan the-
ory becomes more clear, if one tries to incorporate the spinor field
into the torsion-free general theory of relativity. In this context one
should apply the Cartan theory which possesses torsion as well as
curvature [9]. In EC theory, torsion is not a dynamical quantity, in-
stead it can be expressed completely in terms of the spin sources
[6]. Consequently, in order to study the effects of torsion in U4
geometry (it is usual to denote the Riemann–Cartan space–time
as U4 to distinguish it from the Riemannian space–time) one may
consider the matter fields with intrinsic angular momentum. To do
this, one of the usual ways is to consider a fluid with intrinsic spin
density known as the Weyssenhoff exotic perfect fluid [10]. As in
the case of other alternative theories of gravity, it is important to
seek the cosmological solutions in the EC theory of gravity, i.e., in
a theory in which the spin properties of matter and their influ-
ence on the geometrical structure of space–time are considered.
This is done by some authors [11], who have investigated the ef-
fects of torsion and spinning matter in a cosmological setting and
its possible role to remove the singularities, inflationary scenarios,
explain the late time accelerated expansion of the Universe and so
on.

A question of interest related to classical and quantum cos-
mological models is that of signature transition which has been
attracting attention since the early 1980s. Traditionally, a feature
in GR is that one usually fixes the signature of the space–time
metric before trying to solve Einstein’s field equations. However,
there is no a priori reason for doing so and it is well known
that the field equations do not demand this property, that is, if
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one relaxes this condition one may find solutions to the field
equations which, when parameterized suitably, can either have
Euclidean or Lorentzian signature. The notion of signature transi-
tion mainly started to appear in the works of Hartle and Hawking
[12] where they argued that in quantum cosmology amplitudes for
gravity should be expressed as the sum of all compact Riemannian
manifolds whose boundaries are located at the signature changing
hypersurface. This phenomenon has been studied at the classical
and quantum cosmology level by other authors, see for example
[13]. In what follows by a signature changing space–time we mean
a manifold which contains both Euclidean and Lorentzian region.
As it is shown in [14], in classical GR, a signature changing met-
ric should be either degenerate or discontinuous, though Einstein’s
equations implicitly assume that the metric is non-degenerate and
at least continuous.

In this Letter, we consider a smooth signature changing type of
flat FLRW space–time in the framework of EC gravity with exotic
Weyssenhof perfect fluid. For the case of a spatially flat Universe,
field equations are then solved exactly for the scale factor as dy-
namical variable, giving rise to cosmological solutions with a de-
generate metric, describing a continuous signature transition from
a Euclidean domain to a Lorentzian space–time.

2. The model

In this section we start by briefly studying the EC gravity where
the action is given by (we work in units where c = 1 and consider
the signature (+,−,−,−) for the space–time metric)

S =
∫ √−g d4x

[
− 1

16πG
(R̃ − 2Λ) +LM

]
, (1)

where R̃ is the Ricci scalar constructed by the asymmetric con-
nection Γ̃ μ

αβ and Λ is the cosmological constant. By using of the
metricity condition [6]

∇̃α gμν = 0, (2)

and also the definition of torsion

T μ
αβ := Γ̃ μ

αβ − Γ̃ μ
βα, (3)

the connection Γ̃ μ
αβ can be expressed as

Γ̃ μ
αβ = Γ μ

αβ + K μ
αβ, (4)

where Γ μ
αβ is the Levi-Civita connection (Christoffel symbol) and

K μ
αβ is the contorsion tensor related to the torsion Q αβ

μ :=
Γ̃[αβ]μ via

K μ
αβ := 1

2

(
Q μ

αβ − Q α
μ

β − Q β
μ

α

)
. (5)

Also LM is essentially the Lagrangian density for matter field
coupled to gravity. Our assumption is that instead of usual Big-
Bang singularity in the early Universe, we have signature changing
event. Therefore, we focus our attention on the early Universe
epoch where the matter content of the model is of the form of
fermionic matter, like quarks and leptons. The dynamical equations
of motion can be obtained by performing the variation of the ac-
tion with respect to the metric and contorsion [6], that is⎧⎪⎨
⎪⎩

Gμν − Λgμν − (∇α + 2Q αβ
β
)(

T μνα − T ναμ + T αμν
)

= 8πGT μν,

T μνα = 8πGτμνα,

(6)

where

Tμν
α = Q μν

α + δα
μ Q νβ

β − δα
ν Q μβ

β, (7)

and Gμν and ∇α are respectively the Einstein tensor and covariant
derivative for the full nonsymmetric connection Γ . Also⎧⎪⎪⎨
⎪⎪⎩

T μν := 2√−g

δLM

δgμν
,

τμνα := 1√−g

δLM

δKανμ
,

(8)

are the energy–momentum and the canonical spin-density tensors
respectively. Now by using equations (6) and (7) one can obtain
modified Einstein field equations

Gμν(Γ ) = 8πG
(
T μν + τμν

)
, (9)

where Gμν(Γ ) is the usual symmetric Einstein tensor and

ταβ =
[
−4ταμ[ντ βν

μ] − 2ταμντβ
μν + τμνατμν

β

+ 1

2
gαβ

(
4τλ

μ[ντ λν
μ] + τμνλτμνλ

)]
(10)

is the correction to the space–time curvature due to the spin [10].
If the spin vanishes then equation (9) reduces to the standard
Einstein field equations. We assume that LM describes a fluid of
spinning particles in the early Universe minimally coupled to the
metric and the torsion of the U4 theory. For the spin fluid the
canonical spin tensor is given by [10]

τμνα = 1

2
Sμνuα, (11)

where Sμν is the antisymmetric spin density and uα is the
4-velocity of the fluid [15]. Then the energy–momentum tensor
can be decomposed into the two parts: the usual perfect fluid
T F

αβ and an intrinsic-spin part T S
αβ , as

T αβ = T F
αβ + T S

αβ, (12)

so that we have explicitly for intrinsic-spin part

T S
αβ = u(α Sβ)μuνuμ;ν + (

u(α Sβ)μ
)
;μ + Q μν

(αuβ) Sνμ

− uν Sμ(β Q α)
μν − ωμ(α Sβ)

μ + u(α Sβ)μωμνuν, (13)

where ω is the angular velocity associated with the intrinsic spin
and semicolon denotes covariant derivative with respect to Levi-
Civita connection. If as usual interpretation of EC gravity we as-
sume that Sμν is associated with the quantum mechanical spin of
microscopic particles [11], then for unpolarized spinning field we
have 〈Sμν〉 = 0 and if we define

σ 2 := 1

2

〈
Sμν Sμν

〉
, (14)

we get〈
ταβ

〉 = 4πGσ 2uαuβ + 2πGσ 2 gαβ, (15)

and{〈
T F

αβ
〉 = (ρ + p)uαuβ − pgαβ,〈

T S
αβ

〉 = −8πGσ 2uαuβ .
(16)

Consequently the simplest EC generalization of standard gravity
will be

Gαβ(Γ ) = 8πGΘαβ, (17)

where Θαβ describes the effective macroscopic limit of matter
field
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