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Spontaneous symmetry breaking gives rise to a nonzero order parameter or a ground state expectation
value (GEV) of the scalar field that generates energy gaps or constituent masses for the fermions via
Yukawa interactions. There are several physical situations in which the order parameters or GEVs of the
scalar field (and therefore constituent masses) can become space varying. This can change the definitions
of several important physical operators. We investigate and rederive the generalized magnetic moment
operator for ‘constituent’ fermions that arises from a space varying order parameter or GEV.
We especially consider the high baryon density π0 condensed phase, in which chiral symmetry is spon-
taneously broken, with space varying expectation values of the σ and π0 fields. This phase has a
spin polarized Fermi sea as the ground state. We show that there is indeed generated a macroscopic
magnetization in this phase, contrary to what one would have found, if one just used a primitive phe-
nomenological magnetic moment formula for explicit/current fermion masses. This is important in the
context of neutron stars, as such a high density state may be responsible for very high magnetic fields in
the dense core of neutron stars.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spontaneous symmetry breaking gives rise to a nonzero or-
der parameter that generates an energy gap, as in superconduc-
tivity. Similarly, spontaneous symmetry breaking gives rise to a
nonzero order parameter or a vacuum expectation value (VEV) for
the scalar field that generates constituent masses for the fermions.
Constituent fermions or energy gaps arise in a variety of models
from electron superconductivity, the Standard Model of the elec-
troweak interactions via the Higgs VEV to the strong interactions
(in the chiral symmetry limit) where the nucleon/quark masses are
generated by the VEV of the scalar field.

Constituent masses are different from explicit or current
masses. For example, constituent masses occur when chiral sym-
metry is spontaneously broken. In this case the exact chiral sym-
metric Hamiltonian remains invariant under a chiral symmetry
transformation, whereas any current mass in the Hamiltonian ex-
plicitly breaks the chiral symmetry.
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There are several situations in condensed matter physics in
which space dependent order parameters or ground state expecta-
tion values (GEVs) occur, for example, in crystalline superconduc-
tors and charge density waves. Such space dependent GEVs or or-
der parameters also occur for diquark superconductors in QCD [1,
5,7] and in pion condensation [14,16,8,2,12,20]. Such states can oc-
cur when fermions from two asymmetric Fermi seas, with different
Fermi energies or chemical potentials, pair together, for then, the
pair carries a nonzero momentum. An example is the LOFF state,
first explored by Larkin and Ovchinnikov [13], Fulde and Ferrell
[9], and Takada and Izuyama [19] in the context of electron super-
conductivity in the presence of magnetic impurities. They found
that in a small range of chemical potential difference in the two
species, it is favorable to form a state in which the Cooper pairs
have nonzero momentum. Such condensates spontaneously break
translational and rotational invariance, leading to gaps which vary
periodically in space.

Analogously, for the strong interactions in several physical situ-
ations the GEVs of the scalar (or and pseudoscalar) field or order
parameters and therefore constituent masses can become space
varying, further underlining the difference with current masses.
Such space varying order parameters can change the field equa-
tions which in turn change the exact form of some operators
which follow from the use of the field equations. In such a context
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the use of the usual phenomenological formulae for space constant
order parameters or GEVs can be misleading and lead to apparent
paradoxes as we show below. This is a matter of some import for
such ground states both in condensed matter and the strong in-
teractions. We shall illustrate this for an important operator, the
magnetic moment operator, below.

One such case that we will consider is the case of a high baryon
density ground state for strongly interacting nucleons, which has a
π0 condensate that is a (space varying) stationary wave [8,2,12,
20,18]. In this case when we calculate the magnetic moment of
the nucleons in the presence of a π0 condensate using the naive
formula, we find a somewhat paradoxical result: that for a spin po-
larized neutron ground state, the magnetic moment vanishes when
averaged over space [17] Many of the above authors have also used
the naive formulae. However, when we compute the magnetic mo-
ment operator from first principles, from the chiral Lagrangian, we
find it has the right space dependence, which cancels out with the
space dependence of the ground state to give a magnetic moment
that is proportional to the total spin. Furthermore, this reveals that
the magnetization of this state goes up as the GEV, that determines
the ‘mass’, comes down with increasing baryon density.

This is important in the context of neutron stars, as such a high
density ground state may be responsible for very high magnetic
fields in the dense core and could be the origin of magnetars [6,
11] — the stars with the largest magnetic fields in the universe.

2. Current and constituent masses

2.1. QED

Quantum electrodynamics is a theory with an explicit or cur-
rent electron mass, me , which breaks chiral symmetry explicitly.
The case of the electron magnetic moment operator is explicitly
worked out in the text of Sakurai (Advanced Quantum Mechanics)
via the Gordon decomposition (see [15, 3-3, p. 85]).

Hmag = − e

2me

1

2
Fμνψ̄σμνψ. (1)

(h̄ = c = 1.)

2.2. The chiral symmetric Gellmann–Levy sigma model

In a chiral symmetric theory, the mass of the nucleon/quark
comes from the VEV of 〈σ 〉, for example in the linear σ model of
Gellmann and Levy [10]. In the case of exact chiral symmetry we
have the following Lagrangian when we couple the Gellmann–Levy
sigma model to the electromagnetic field

L = −1

4
Fμν Fμν −

∑
ψ

(
/D + g y(σ + iγ5 �τ · �π)

)
ψ

− 1

2
(∂μσ)2 − 1

2
(∂μ �π)2 − λ2

4

(
σ 2 + �π2 − (F )2)2

. (2)

In the limiting case of a small explicit pion mass being set to
zero, the usual (uniform in space) symmetry breaking that follows
on the minimization of the potentials above is 〈σ 〉 = F = fπ and
〈 �π 〉 = 0.

The masses of the scalar (PS) and fermions are given by

〈σ 〉2 = F 2 (3)

where F is the pion decay constant. It follows that

m2
σ = 2λ2 F 2, m = g〈σ 〉 = g F . (4)

The quark or nucleon mass, m, is a spontaneous mass that is
generated from the spatially uniform VEV. In this case the usual
magnetic moment formula above (1) works.

On the other hand when the VEVs of 〈σ 〉 and 〈 �π 〉 depend on
space coordinates, the above expression for the magnetic moment
will not work as we will find in the following section.

3. The π0 condensation: space dependent VEVs

3.1. The π0 condensed ground state

Here we shall consider another realization of the expectation
value of 〈σ 〉 and 〈 �π 〉 corresponding to π0 condensation. This phe-
nomenon was first considered in the context of nuclear matter
[8,2]. Such a phenomenon also occurs with our quark based chiral
σ model and was considered at the mean field level by Kutschera,
Broniowski and Kotlorz for the 2 flavor case [12] and by one of us
for the 3 flavor case [18]. Working in the chiral limit they found
that the pion condensed state has lower energy than the uniform
symmetry breaking state we have just considered for all density.
This is expected, as the ansatz for the pion condensed phase is
more general.

The expectation values now carry a particular space depen-
dence

〈σ 〉 = F cos(�q.�r), (5)

〈π3〉 = F sin(�q.�r), (6)

〈π1〉 = 0, (7)

〈π2〉 = 0. (8)

Note that the relation, 〈σ 2〉 + 〈 �π2〉 = F 2, is preserved under
this pattern of symmetry breaking. Also, when |�q| goes to zero, we
recover the usual space uniform phase above.

The Dirac Equation in this background is solved in [8,12] by
the artifact of writing the wave function, ψ , in terms of a chirally
rotated wave function, χ(k),

ψ = exp
(−i(τ3/2)γ5�q · �r) · χ(k) (9)

where χ(k) are momentum eigenfunctions.
The Hamiltonian reduces to

Hχ(k) =
(

�α.�k − 1

2
�q.�αγ5τ3 + βm

)
χ(k) = E(k)χ(k) (10)

where m = g
√〈σ 〉2 + 〈 �π 〉2 = g F

The second term arises from the condensate and has been writ-
ten in terms of the relativistic spin operator, �αγ5. It is evident that
if spin is parallel to �q and τ3 = +1 (proton/up quark) this term is
negative and if τ3 = −1 (neutron/down quark) it is positive. For
spin antiparallel to �q the signs of this term for τ3 = +1 and −1
are reversed.

The spectrum for the Hamiltonian is the quasi particle spectrum
and can be found to be [8,12]

E(−)(k) =
√

m2 + k2 + 1

4
q2 −

√
m2q2 + (�q.�k)2, (11)

E(+)(k) =
√

m2 + k2 + 1

4
q2 +

√
m2q2 + (�q.�k)2. (12)

The lower energy eigenvalue E(−) has spin along �q for τ3 = 1, or
has spin opposite to �q for τ3 = −1. The higher energy eigenvalue
E(+) has spin along �q for τ3 = −1, or has spin opposite to �q for
τ3 = +1.
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