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We investigate modifications of the discrete-time lattice action, for a quantum mechanical particle in
one spatial dimension, that vanish in the naïve continuum limit but which, nevertheless, induce non-
trivial effects due to quantum fluctuations. These effects are seen to modify the geometry of the paths
contributing to the path-integral describing the time evolution of the particle, which we investigate
through numerical simulations. In particular, we demonstrate the existence of a modified lattice action
resulting in paths with any fractal dimension, d f , between one and two. We argue that d f = 2 is a
critical value, and we exhibit a type of lattice modification where the fluctuations in the position of the
particle becomes independent of the time step, in which case the paths are interpreted as superdiffusive
Lévy flights. We also consider the jaggedness of the paths, and show that this gives an independent
classification of lattice theories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The path-integral representation of the amplitude 〈x′, t′|x, t〉 for
a quantum mechanical particle of mass m moving in a local po-
tential V (x) is usually written as a limit of a multi-dimensional
integral [1]:

Z ≡ 〈
x′, t′|x, t

〉 = lim
N→∞N

∫
dx1 . . . dxN−1 e−S N , (1)

where we have changed to imaginary time (t → −it) and set h̄ = 1.
Here N = (m/2πa)N/2 and SN is the discrete-time action which
should approach the classical continuum action S as the lattice
constant a ≡ (t f − ti)/N goes to zero, i.e.,

lim
N→∞ SN = S =

t f∫
ti

dt

[
1

2
ẋ2 + V (x)

]
. (2)

We have chosen units such that the mass m of the particle is one.
The particular choice

SN ≡
N−1∑
k=0

Sk =
N−1∑
k=0

a

[
1

2

(
�xk

a

)2

+ V (xk)

]
, (3)
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where �xk ≡ xk+1 − xk , with a time-step dt → �t ≡ a, is referred
to as the naïve discretization of the classical action S , and has, for
example, been used in modeling time as a discrete and dynamical
variable [2]. The choice of Eq. (3) is, however, by no means unique
and the ambiguity of the discretization has been investigated pre-
viously by, e.g., Klauder et al. in Ref. [3]. As an interesting example,
it has also been shown that adding terms proportional to a�x2n

k , as
a → 0 (n = 1,2, . . .), to each term Sk in the sum in Eq. (3) permits
a radical speedup of the convergence in Monte Carlo simulations
[5]. Classically, one expects �xk/a → ẋ to be well-defined as a → 0
and thus Sk =O(a), and, as was noted in Ref. [5], one would have
a�x2n

k → a2n+1 ẋ2n = O(a2n+1), which clearly vanish in the a → 0
limit. We will refer to these considerations as the “naïve contin-
uum limit” in the following.

As was pointed out in Ref. [3], and in a related framework in
Ref. [4], the argumentation above is, however, not true for quan-
tum mechanical paths, as one expects �xk =O(

√
a ) in accordance

with the Itô calculus for a Wiener process, and thus the action
then contains terms Sk of order one. Modifications as those con-
sidered in Ref. [5] still vanish, but only as fast as O(an+1). This
implies no difficulty for the numerical speedup procedure, but in
general, it is clear that one must take care when modifying the
action in the presence of quantum fluctuations.

We now wish to expand on the work from Ref. [3] and pro-
ceed to study precisely those modifications to the discrete action
that vanish in the naïve limit, but might induce non-trivial ef-
fects when quantum fluctuations are taken into account. We will
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show that not only can non-vanishing local potentials be induced
by such alterations, as was shown in Ref. [3], but the situation is
further complicated in that the size of quantum fluctuations can
be changed under the modified lattice theory, such that no naïve
assumptions on the continuum limit can be made. This can be
seen to manifest itself in the geometrical properties of the paths
contributing to the path-integral, and as we will see shortly, can
generate both sub- and super-diffusive behaviour.

2. Geometry of path-integral trajectories

We now quickly review two useful measures that will be used
to quantify the geometry of relevant paths in the path-integral. The
geometry of path-integral trajectories has been investigated pre-
viously, in particular by Kröger et al. in Ref. [6], where a fractal
dimension was defined and found both analytically and numer-
ically for local and velocity-dependent potentials. More recently
a complementary property termed “jaggedness” was identified by
Bogojevic et al. in Ref. [7]. Both of these measures signify the rel-
evance of different paths as to what degree they contribute to the
total path-integral.

To define the fractal dimension, d f , for path-integral trajecto-
ries, we recall that the fractal dimension for a classical path can
be defined in the following way: We first define a length of the
path, L(ε), as obtained with some fundamental resolution ε . This
can, for example, be done by making use of a minimal covering
of the path with “balls” of diameter ε such that L(ε) = N(ε) × ε ,
where N(ε) is the number of balls. A fractal dimension can then
be defined as the unique number d f such that L(ε) ∼ ε1−d f as
ε → 0 [12]. For path-integral trajectories, a total length can be
defined as 〈L〉 = 〈∑k |�xk|〉, and the role of ε will be played by
the expected absolute change in position, 〈|�xk|〉, over one small
time step �t � a. Here 〈·〉 denotes the quantum-mechanical av-
erage using the probability distribution obtained from Eq. (1). For
a typical value, |�x|, of 〈|�xk|〉, say |�x| � (�t)1/γ , we then have
that 〈L〉 � N|�x| � T |�x|1−γ since N � T /�t , with T = t f − ti . We
then conclude that d f = γ . The fractal dimension can therefore be
obtained through a scaling with the number of lattice sites N , as
N → ∞, with T = N�t � Na held fixed, i.e.,

〈L〉 ∼ N1−1/d f , (4)

for sufficiently large N . This is also the definition made use of in
Ref. [6], and is a measure of how the increments 〈|�xk|〉 scale with
the time step �t � a. In the spirit of anomalous-diffusion consid-
erations (see e.g. Ref. [13]), we will refer to those paths with a
fractal dimension d f < 2, as defined above, as sub-diffusive, re-
flecting that they spread in space at a slower than normal rate.
Similarly those paths with d f > 2 are referred to as super-diffusive,
which then corresponds to Lévy flights (see e.g. Ref. [14]).

A remark on the physical interpretation of d f is in order before
we proceed. The length 〈L〉 defined above is not necessarily an
experimentally observable length. It gives us, however, an insight
into the nature of how the geometry of those paths with a non-
zero measure change under modification of the lattice action. The
definition of a fractal dimension for the physical path of a quan-
tum mechanical particle must necessarily involve considerations of
a measuring apparatus, as was done by Abbott and Wise [8]. Inclu-
sion of quantum measurements in a path-integral framework has
been discussed in the literature (see e.g. Ref. [9]), but will not be
considered in this work.

It is well known that the paths contributing to the path-
integral, Eq. (1), are continuous but non-differentiable. Indeed, us-
ing a partial integration, Feynman and Hibbs [1] showed that for
any observable F the identity

〈
δF

δxk

〉
=

〈
F

δS

δxk

〉
(5)

holds. In the case F = xk this leads to

〈
�x2

k

〉 = O(a), (6)

for the lattice action Eq. (3) and for sufficiently small a, and where
we from now on assume that expressions like 〈xk dV (xk)/dxk〉 are
finite. Hence, we expect 〈|�xk|〉 ∝ 1/

√
N and 〈L〉 ∝ √

N corre-
sponding to a fractal dimension of d f = 2, which has been con-
firmed numerically in Ref. [6].

The second measure we will use to describe the relevant paths
in the path-integral, is the “jaggedness”, J , defined in Ref. [7],
which counts the number of maxima and minima of a given path:

J = 1

N − 1

N−2∑
k=0

1

2

[
1 − 〈

sgn(�xk�xk+1)
〉]
, (7)

with J ∈ [0,1]. It is a measure of the correlation between �xk
and �xk+1 with J = 1/2 +O(a) for completely uncorrelated incre-
ments. We therefore expect the jaggedness to be invariant under
modifications only altering nearest neighbor interactions on the
lattice. Below we will consider the average value of J for sub- and
super-diffusive paths.

3. Sub-diffusive paths

Sub-diffusive paths, as defined here, were discovered to be the
contributing paths in the presence of a velocity dependent poten-
tial, V 0|v|α , in Ref. [6]. We will here consider a similar modifica-
tion, that in fact vanish in the naïve continuum limit, yet changes
the geometry of the paths when quantum fluctuations are taken
into account:

Sk → Sk + gaξ

∣∣∣∣�xk

a

∣∣∣∣
α

, (8)

where g is a coupling constant, ξ � 1 and α � 0. The last term
is identical to the modification considered in Ref. [6] for ξ = 1,
but naïvely vanishes for any ξ > 1. Due to quantum fluctuations,
however, Eq. (6) must be replaced by

1

a

〈
�x2

k

〉 + gαaξ−α
〈|�xk|α

〉 = O(1), (9)

showing that for α > 2ξ the last term dominates, and we expect
〈|�xk|〉 ∝ a(α−ξ)/α , corresponding to a fractal dimension of d f =
α/(α − ξ). For α � 2ξ we still have d f = 2 showing that 2ξ is
a critical point for the fractal dimension as a function of α. For
ξ = 1 this reproduces the results from [6]. In Fig. 1 we show how
the length 〈L〉 scales with the number of lattice sites N for various
α and ξ = 2. The results are produced numerically by standard
Monte Carlo methods [6,10,11]. From this scaling one can find the
fractal dimension according to Eq. (4). In Fig. 2 we have extracted
the fractal dimension as a function of α numerically for ξ = 1, 2
and 3. We see that the numerical results fit well to the expected
values of d f = 2 for α � 2ξ and d f = α/(α − ξ) for α > 2ξ , shown
as solid lines in the figure.

4. Super-diffusive paths

Consider now modifications of the form

Sk → f (Sk), (10)

for some analytical function, f (x), with the constraint f (x) = x as
x → 0, in order to reproduce the classical limit. This constitutes
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