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One of the most remarkable predictions of the general theory of relativity is the existence of black-hole
“photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole.
We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by
a photonsphere whose radius is bounded from above by rγ � 3M , where M is the total ADM mass of
the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound.
In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the
bound.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The geodesic motions of test particles around central compact
objects (e.g. black holes, neutron stars) provide valuable infor-
mation about the structure and geometry of the corresponding
curved spacetime [1–4]. Of particular importance are circular null
geodesics – orbits with constant coordinate radii on which mass-
less particles can orbit the central compact object [5]. Circular null
orbits (also known as “photon orbits” or “photonspheres”) are in-
teresting from both an astrophysical and theoretical points of view
[1–4,6]. For example, the optical appearance to external observers
of a compact star undergoing gravitational collapse is closely re-
lated to the physical properties of the photonsphere [4,7,8].

Unstable circular null geodesics are also related to the charac-
teristic (quasinormal) resonances of black-hole spacetimes [4,9–14].
In particular, in the framework of the geometric–optics (eikonal)
approximation, these characteristic resonances can be interpreted
in terms of massless particles temporarily trapped at the unsta-
ble null orbit of the black-hole spacetime [4,9–14]. In addition, it
was shown [15] that the remarkable phenomenon of strong gravi-
tational lensing by black holes is closely related to the presence of
null circular geodesics in the corresponding black-hole spacetimes.

Furthermore, for hairy black-hole spacetimes a theorem was
recently proved [16,17] that reveals the central role played by
the black-hole photonsphere in determining the effective length
of the hair outside the black-hole horizon. According to this the-
orem, the non-trivial (non-asymptotic) behavior of the hair must
extend above the black-hole photonsphere. In this respect, the
black-hole photonsphere provides a generic lower bound on the
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effective length of the black-hole hair [16,17]. In addition, it was
recently proved [18] that the innermost null circular geodesic of
a black-hole spacetime provides the fastest way (as measured by
asymptotic observers) to circle the central black hole.

The central role played by photonspheres in both astrophysi-
cal [4,7,8] and cosmological [15] scenarios involving black holes,
as well as in purely theoretical studies of black-hole spacetimes
[4,9–14,16,18], makes it highly important to explore the physical
properties of these unique null orbits. The main goal of the present
study is to extend our knowledge about the physical properties of
these fascinating geodesics. In particular, in the present Letter we
shall address the following question: In a generic black-hole space-
time, how close is the photonsphere to the black-hole horizon? As
we shall show below, one can derive a generic upper bound on the
radii of black-hole photonspheres. This bound is expressed in terms
of the total (ADM) mass of the black-hole spacetime.

2. Description of the system

We consider static, spherically symmetric, asymptotically flat
black-hole spacetimes. The line element may take the following
form in Schwarzschild coordinates [17–19]

ds2 = −e−2δμdt2 + μ−1 dr2 + r2(dθ2 + sin2 θ dφ2), (1)

where the metric functions δ(r) and μ(r) depend only on the
Schwarzschild areal coordinate r. Asymptotic flatness requires

μ(r → ∞) → 1 and δ(r → ∞) → 0. (2)

It is worth emphasizing that our results would be valid for
all spherically symmetric asymptotically flat black-hole spacetimes.
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We note, in particular, that we do not assume δ(r) = 0 (a prop-
erty which characterizes the familiar Schwarzschild and Reissner–
Nordström black-hole spacetimes) and thus our results would be
applicable to hairy black-hole configurations as well [in these
spacetimes δ(r) �= 0, see [20–24] and references therein].

Taking T t
t = −ρ , T r

r = p, and T θ
θ = T φ

φ = pT , where ρ , p, and pT

are identified as the energy density, radial pressure, and tangential
pressure respectively [25], the Einstein equations Gμ

ν = 8π T μ
ν read

μ′ = −8πrρ + (1 − μ)/r, (3)

and

δ′ = −4πr(ρ + p)/μ, (4)

where the prime stands for differentiation with respect to r. (We
use natural units in which G = c = 1.)

Regularity of the event horizon at r = rH requires [17]

μ(rH) = 0 with μ′(rH) � 0, (5)

and

δ(rH) < ∞; δ′(rH) < ∞. (6)

From Eqs. (3) and (5) one finds the boundary condition [17,26]

8πr2
Hρ(rH) � 1. (7)

The equality sign corresponds to extremal black holes. From
Eqs. (4)–(6) one finds the additional boundary condition

−p(rH) = ρ(rH). (8)

The mass m(r) contained within a sphere of radius r is given
by

m(r) = 1

2
rH +

r∫
rH

4πr′ 2ρ
(
r′)dr′, (9)

where m(rH) = rH/2 is the horizon mass. From Eqs. (3) and (9) one
finds the relation

μ(r) ≡ 1 − 2m(r)/r. (10)

A finite mass configuration is characterized by a density profile
ρ(r) which approaches zero faster than r−3,

r3ρ(r) → 0 as r → ∞. (11)

3. Upper bound on the radii of black-hole photonspheres

We shall now consider the following question: In the generic
spherically-symmetric black-hole spacetime (1), how close is the
photonsphere to the black-hole horizon? To answer this question
in the most general form, we shall now prove the existence of a
generic upper bound on the radius of the innermost null circular
geodesic.

We shall first follow the analysis of [2,4,16,18] in order to cal-
culate the location r = rγ of the null circular geodesic for a black-
hole spacetime described by the line element (1). The Lagrangian
describing the geodesics in the spacetime (1) is given by

2L = −e−2δμṫ2 + μ−1ṙ2 + r2φ̇2, (12)

where a dot stands for differentiation with respect to proper time.

The generalized momenta derived from the Lagrangian (12) are
given by [2,4]

pt = −e−2δμṫ ≡ −E = const, (13)

pφ = r2φ̇ ≡ L = const, (14)

and

pr = μ−1ṙ. (15)

The Lagrangian is independent of both t and φ. This implies that E
and L are constants of the motion. The Hamiltonian of the system
is given by [2,4] H = ptṫ + prṙ + pφφ̇ −L, which implies

2H = −Eṫ + Lφ̇ + μ−1ṙ2 = ε = const, (16)

where ε = 0 for null geodesics and ε = 1 for timelike geodesics.
Substituting Eqs. (13)–(14) into (16), one finds

ṙ2 = μ

(
E2

e−2δμ
− L2

r2

)
(17)

for null geodesics.
Circular geodesics are characterized by ṙ2 = (ṙ2)′ = 0 [2,4]. This

yields the relation

2e−2δμ − r
(
e−2δμ

)′ = 0 (18)

for the null circular geodesic. Substituting the Einstein equations
(3)–(4) into Eq. (18), one finds the characteristic relation

N (r = rγ ) = 0 (19)

for null circular orbits, where

N (r) ≡ 3μ − 1 − 8πr2 p. (20)

We shall henceforth consider the innermost circular null
geodesic of the black-hole spacetime. Of course, this geodesic must
satisfy the characteristic equation (19). We shall first prove that
such circular null geodesic must exist in the black-hole spacetime:
taking cognizance of Eqs. (5), (7), (8), and (20), one finds

N (rH) � 0 (21)

at the black-hole horizon [27]. In addition, from Eqs. (2), (11), and
(20) [see also Eq. (28) below] one finds the asymptotic behavior

N (r → ∞) → 2. (22)

Inspection of Eqs. (21) and (22) reveals that there must be at least
one intermediate radius rγ (located between the black-hole hori-
zon and spatial infinity) for which N (r = rγ ) = 0. This radius cor-
responds to the location of the null circular geodesic, see Eq. (19).

It is worth emphasizing that the null circular geodesic (19) is
the limiting case of timelike circular geodesics. That is, the null
circular geodesic is the innermost circular orbit in the black-hole
spacetime [2,4]. The spacetime region between the black-hole hori-
zon and the photonsphere, rH � r < rγ , in which circular geodesics
are excluded, is characterized by the inequality

N (rH � r < rγ ) < 0. (23)

We shall now derive a generic upper bound on the radii of
the innermost null circular geodesics. The conservation equation
T μ
ν;μ = 0 for the energy–momentum tensor has only one non-

trivial component [17]

T μ
r;μ = 0. (24)
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