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We study the background cosmology of two extensions of dRGT massive gravity. The first is variable mass
massive gravity, where the fixed graviton mass of dRGT is replaced by the expectation value of a scalar
field. We ask whether self-inflation can be driven by the self-accelerated branch of this theory, and we
find that, while such solutions can exist for a short period, they cannot be sustained for a cosmologically
useful time. Furthermore, we demonstrate that there generally exist future curvature singularities of
the “big brake” form in cosmological solutions to these theories. The second extension is the covariant
coupling of galileons to massive gravity. We find that, as in pure dRGT gravity, flat FRW solutions do
not exist. Open FRW solutions do exist — they consist of a branch of self-accelerating solutions that are

identical to those of dRGT, and a new second branch of solutions which do not appear in dRGT.

© 2013 Published by Elsevier B.V.

1. Introduction and outline

An interacting theory of a massive graviton, free of the Boul-
ware-Deser mode [1], has recently been discovered [2,3] (the dRGT
theory, see [4] for a review), allowing for the possibility of address-
ing questions of interest in cosmology. Pure dRGT massive gravity
admits self-accelerating solutions [5-11], in which the de Sitter
Hubble factor is of order the mass of the graviton. Since having
a light graviton is technically natural [13,12], such a solution is of
great interest in the late-time universe to account for cosmic ac-
celeration.

A natural question is whether a similar phenomenon might
drive inflation in the early universe. To use the self-accelerating
solution of massive gravity for inflation (i.e. “self-inflation”), the
graviton mass would have to be of order the Hubble scale during
inflation. Yet, we know that the current graviton mass cannot be
much larger than the Hubble scale today [14].

Thus, for self-inflation to be possible, the graviton mass must
change in time. One idea of how to realize this is to promote the
graviton mass to a scalar field, @, which has its own dynamics
and can roll [9,17]. The expectation value (VEV) of & then sets
the mass of the graviton. We can imagine that at early times @
has a large VEV, so that the graviton is very massive, and the uni-
verse self-inflates with a large Hubble constant. Then, at late times,
@ rolls to a smaller VEV, self-inflation ends and the graviton mass
attains a small value consistent with present day measurements.
This should be contrasted with the proposal of [17] in which the
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massive gravity terms are subdominant to the inflaton energy den-
sity.

In this Letter, we will see that, in practice, such an inflation-
like implementation of massive gravity is difficult to achieve in
this model. Pure dRGT theory has a constraint, stemming from
the Bianchi identity, which forbids standard FRW evolution in the
flat slicing [9] (the self-accelerating solutions are found in other
slicings). There appears an analogous constraint in the variable
mass theory, and this constraint, while it no longer forbids flat
FRW solutions, implies that self-inflation cannot be sustained for
a cosmologically relevant length of time. In addition, we show that
non-inflationary cosmological solutions to this theory may exhibit
future curvature singularities of the “big brake” type.

In the second half of this Letter (which can be read indepen-
dently from the first), we consider the covariant galileon extension
of massive gravity introduced in [15]. This theory has a new scalar
degree of freedom 7, which describes brane bending in an addi-
tional spatial dimension. (Unlike the variable mass theory, = here
does not act to set the graviton mass, which is fixed. So we are
not interested in self-inflation here, but are just exploring the ba-
sic cosmological equations.)

We derive the background cosmological equations for this the-
ory, and find that the presence of the scalar leads to a more
complicated constraint than in pure dRGT. We discuss the possi-
ble solutions in the case of zero and negative spatial curvature.
We find that, as in pure dRGT theory, this constraint forbids flat
FRW solutions. For an open FRW ansatz, however, solutions can
exist and they come in two branches. The first branch consists of
self-accelerating solutions that are identical to the self-accelerating
solutions of pure dRGT theory. The second branch consists of novel
solutions which are not found in pure massive gravity.
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2. Variable mass massive gravity

We start with variable mass massive gravity. This is dRGT the-
ory in which the graviton mass squared is promoted to a scalar
field @,

S = SEH + Smass + So. (1)

where

SEn = 7M2/d4x\/_R (2)

Smass = M3 / d*x/—g® (L3 + a3L3 + a4Lls), (3)
/d4xJ_|: (@) (0P) + V(dﬁ)} (4)

Here a3, s are the two free parameters of dRGT theory. We have
allowed for an arbitrary kinetic function g(&) and potential V (&),
so that there is no loss of generality in the scalar sector. The mass
term consists of the ghost-free combinations [3],

1 2 2
= 5 (0 - [,

= (P 3Kk +2[%))

6[<"]).

(3)

where K, = 8§*, — /g7 15y, Ny is the non-dynamical fidu-
cial metric which we have taken to be Minkowski, and the square
brackets are traces. To work in the gauge invariant formalism,
we introduce four Stiickelberg fields ¢“ through the replacement
Nuv —> 3u¢aau¢b77ab-

Variable mass massive gravity was first considered in [9], and
further studied in [17-20] (see also [16] for a more symmetric
scalar extension of dRGT). dRGT gravity has been demonstrated to
be ghost-free through a variety of different approaches [21-25],
and the introduction of the scalar field does not introduce any
new Boulware-Deser like ghost degrees of freedom into the sys-
tem [17].

For cosmological applications we take a Friedmann-Robertson-
Walker (FRW) ansatz for the metric, so that

L4= 21—4([IC]4 — 6IKIP[K2] +3[K2]” + 8IKI[K?] -

ds? = —N2(t) dt? + a®(t)2;j dx' dx/, (6)
where
K PR
Q.. — 8 _X'X] 7
ij ij + 1 — k2 ( )

is the line element for a maximally symmetric 3-space of curva-
ture k and r2 = x% 4+ y% 4+ z2. We also take the assumptions of
homogeneity and isotropy for the scalar field,

D =P(1). (8)

Consider first the case of flat Euclidean sections (k = 0). We
work in the gauge invariant formulation, and the Stiickelberg de-
grees of freedom take the ansatz [9,10].

o =x,  ¢°=f@, (9)

where f(t), like a(t), is a monotonically increasing function of t.
Inserting (6) and (9) into the action, we obtain the mini-
superspace action
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) a%a
SEH:3MP/dt[ N } (10)
Sm355:3M%fdt(b[NF(a) - fc@], (11)
So :/dta3[%N_1g(<D)q52 —NV((D)], (12)

where

F@)=a@—1)2a—-1)
+%(a—])2(4a n+ 2 (a—1)3 (13)
G(a):az(a—l)—i-aga(a—l)z—i- ?(a—1)3. (14)

This mini-superspace action is invariant under time reparametriza-
tions, under which f transforms like a scalar. Note that a =1 cor-
responds to the arbitrary reference value of the scale factor which
relates ¢! to x. Only the ratio of the scale factor relative to the
reference value has physical meaning. Therefore we can take the
reference value to be unity without loss of generality.

There are four equations of motion, obtained by varying with
respect to F, N, @ and a. As in GR, the Noether identity for time
reparametrization invariance tells us that the acceleration equation
obtained by varying with respect to a is a consequence of the other
equations, so we may ignore it. After deriving the equations, we
will fix the gauge N =1 (this cannot be done directly in the action
without losing equations).

Varying with respect to f we obtain the constraint pointed out
in [18],

_ <
T Ga)’

where C is an arbitrary integration constant. (Note that the analo-
gous equation in the fixed mass theory implies that a = constant,
so there are no evolving flat FRW solutions in that case [9].) Vary-
ing with respect to N, we obtain the Friedmann equation,

@F(a)] 1

(15)

3M§[H2+ e =§g(<15)<152+v, (16)

and varying with respect to @ we obtain the scalar field equation
. .1 . ,
g(P)[P +3HD] + 5g’(¢>)q>2 + V(@)

:31\/11%[@— 'G(a)}. (17)

a3 ad

Rather than solving the coupled second-order Einstein-scalar
equations of motion, one can instead reduce the system to a sin-
gle first-order Friedmann equation. The relation (15) can be used
to eliminate @ and its first derivative from (16), which then be-
comes a first-order differential equation in a which determines the
scale factor,

C 2, F(a)
V(W) —3M3C

H? = ciw (18)
o 2 15240 C \G(@3a"
3Mp = 3C°8(5w) Can

Once we have solved for the scale factor, the scalar & is deter-
mined from (15) and the Stiickelberg field f is determined by
solving (17).!

T Note that in general the Stiickelberg field cannot be chosen arbitrarily as in [18]
but is non-trivially constrained by the choice of mass term, or in this case, kinetic
function g(®).
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