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We model the universe as a 3-brane embedded in five dimensional spacetime with N = 2 supersymme-
try. The presence of the scalar fields of the universal hypermultiplet in the bulk results in a positive
pressure effectively reducing the value of the cosmological constant and thereby providing a possible
answer as to why the measured value of the cosmological constant is many orders of magnitude smaller
than predicted from the vacuum energy. The solution allows for any number of parallel branes to exist
and relates their cosmological constants (as well as matter densities and radiation pressures) to the value
of the dilaton in the extra dimension. The results we find can be thought of as first order approximations,
satisfying supersymmetry breaking and the Bogomol’nyi–Prasad–Sommerfield (BPS) conditions in the
bulk only.
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1. Introduction

The 1998 discovery that the universe’s expansion is accelerat-
ing [1,2] took the scientific community by storm. The term ‘dark
energy’ was coined to account for the source of the mysteri-
ous negative pressure causing the acceleration. From the point of
view of the Einstein gravitational field equations, this energy is
modeled by the presence of a positive cosmological constant Λ.
Although many different models explaining the origin of this dark
energy exist, it is somewhat accepted today that the main contrib-
utor is almost certainly the energy of the vacuum as calculated
from the standard model (see, for example, [3] and references
within). There is a problem with this, however, as the vacuum’s
contribution seems to be many orders of magnitude larger than
is actually observed, at least at the present epoch. The most re-
cent estimates (e.g. [4]) put the difference to about 120 orders of
magnitude; a catastrophic discrepancy that cannot simply be ap-
proximated away! Many solutions, as well as partial solutions, to
this problem have been proposed. Of particular interest to us are
models that embed our universe in a higher dimensional space,
usually as a ‘string-theoretic’ 3-brane. Such models of ‘brane cos-
mology’ exist in abundance and range over various categories from
non-supersymmetric solutions, to solutions that explain the accel-
eration with zero cosmological constant, and many others (see, for
example, [5–15]).
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In this Letter we consider five dimensional N = 2 supergrav-
ity with the scalar fields of the universal hypermultiplet (UH).
Our universe is modeled as a 3-brane satisfying the conditions of
homogeneous and isotropic expansion, i.e. the standard Robertson–
Walker metric construction. The current work generalizes a static
3-brane solution that was found in [16] to one with time depen-
dence. We assume the simple form of constant matter density and
radiation pressure in the universe, as well as a possible cosmolog-
ical constant in the bulk. As such our model does not chart the
entire history of the universe, but rather just an effective snap-
shot of a specific epoch. We find that a generalization of our result
to one with multiple brane solutions (parallel universes) is quite
straightforward and is in fact almost demanded by the equations.
The observed numerical values of the cosmological constant, mat-
ter and radiation pressure densities are tied in to the values of the
UH fields in the bulk and as such change from brane to brane. Our
universe’s observed values are the way they are by virtue of our
presence in this particular brane rather than another. Furthermore,
we find that the values of these constants are controlled by a free
parameter B that is not determined by the model. But a lower
bound may simply be placed on it by requiring that the fields
vanish at bulk infinity. The entire result can be thought of as a
first order approximation in the following sense: The brane’s mat-
ter and radiation contents are not included in the theory’s action
and as such do not couple to the gravitini; so the supersymmetry
variation equations are valid only in the bulk. This opens up a va-
riety of questions and directions of possible future research, as will
be subsequently discussed.

The Letter is organized as follows: In Section 2 we review the
five dimensional supergravity theory formulated in the language
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of split complex numbers. In Section 3 we introduce our metric
ansatz and calculate the components of the Einstein field equa-
tions. It is shown that two possible solutions exist. Only one is
discussed in this Letter, the other is deferred to future work. The
UH fields are found in Section 4. Finally, the modified Friedmann
equations are derived and the full solution is summarized in Sec-
tion 5.

2. Five dimensional N = 2 supergravity

The dimensional reduction of D = 11 supergravity theory
(see [17] for a review) over a rigid Calabi–Yau 3-fold (constant
Kähler and complex structure moduli) yields an ungauged N = 2
supersymmetric gravity theory in D = 5 with a matter sector com-
prised of four scalar fields and their superpartners; collectively
known as the universal hypermultiplet. These are: the dilaton σ
(volume modulus of the Calabi–Yau space), the universal axion ϕ ,
the pseudo-scalar axion χ and its complex conjugate χ̄ [18,19].
In [16], it was argued that another way to represent the theory is
by employing split-complex numbers, as opposed to the more tra-
ditional complex representation. To do so, the axions are defined
as follows

χ = χ1 + jχ2

χ̄ = χ1 − jχ2, (1)

where (χ1,χ2) are real functions and the ‘imaginary’ number j is
defined by j2 = +1 but is not equal to ±1. In this representation,
the bosonic action of the theory is:

S5 =
∫
5

[
R � 1 − 1

2
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− 1

2
e2σ

(
dϕ + j

2
f

)
∧ �

(
dϕ − j

2
f̄

)]
, (2)

where � is the D = 5 Hodge duality operator and we have defined

f = (χ dχ̄ − χ̄ dχ)

f̄ = − f , (3)

for brevity.1 The variation of the action yields the following field
equations for σ , (χ, χ̄) and ϕ respectively
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[
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dϕ + j

2
f

)]
= 0, (7)

where d† is the adjoint exterior derivative and � is the Laplace–
De Rahm operator. The full action is invariant under the following
set of supersymmetry (SUSY) transformations of the gravitini ψ

and hyperini ξ fermionic fields respectively (M = 0, . . . ,4):

1 It is noted that the action in this form suffers from the presence of high energy
ghost-like terms. However, as we will see, these are exactly canceled in our solution
and as such have no physical effect on our conclusions.
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where

D = d + 1

4
ωM̂N̂ΓM̂ N̂ , (12)

is the usual covariant derivative, the Γ ’s are the D = 5 Dirac matri-
ces, (ε1, ε2) are the N = 2 SUSY spinors, ω is the spin connection
and the hatted indices are frame indices in a flat tangent space.

3. Spacetime background

From the point of view of D = 5 SUGRA, our universe may
be modeled by a 3-brane in a five dimensional bulk. This implies
the embedding of the Robertson–Walker metric in five dimensional
space as follows

ds2
5 = e2Cσ (y)

[
−dt2 + a2(t)

(
dr2

1 − kr2
+ r2 dΩ2

2

)]

+ e2Bσ (y)b2(t)dy2 (13)

where dΩ2
2 = dθ2 + sin2 θdφ2 is the line element of the unit

sphere S2, the quantities C and B are constants to be determined,
a(t) is the usual scale factor and b(t) is a bulk scale factor. The so-
lution we seek should have a(t) ∼ eHt , where the positive constant
H is the current value of the Hubble parameter, to account for the
accelerating phase of the universe. Also, since current data [20]
seems to imply that on a large scale our universe is essentially
flat, we will then take the ‘curvature’ factor k to be zero.

The matter content of this five dimensional space is comprised
of the UH fields in the bulk, represented by the following stress
tensor (μ,ν = t, r, θ,φ):
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in addition to the usual perfect fluid stress tensor on the brane:

T3brane
μν = ρUμUν + P (gμν + UμUν), (15)
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