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We present a new formula to calculate matrix elements of a general unitary operator with respect to
Hartree–Fock–Bogoliubov states allowing multiple quasi-particle excitations. The Balian–Brézin decompo-
sition of the unitary operator [R. Balian, E. Brézin, Il Nuovo Cimento B 64 (1969) 37] is employed in the
derivation. We found that this decomposition is extremely suitable for an application of Fermion coherent
state and Grassmann integrals in the quasi-particle basis. The resultant formula is compactly expressed
in terms of the Pfaffian, and shows the similar bipartite structure to the formula that we have previously
derived in the bare-particles basis [T. Mizusaki, M. Oi, Phys. Lett. B 715 (2012) 219].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In nuclear many-body physics, evaluations of matrix elements
of many-body operators have been a major obstacle to implemen-
tations of sophisticated methods and theories beyond the mean-
field approximation. Nuclear physicists have put effort into find-
ing convenient formulae [1–3] to calculate matrix elements (and
overlaps) with respect to Hartree–Fock–Bogoliubov (HFB) states.
But difficulties remained in the obtained formulae. Although there
were some numerical attempts to circumvent difficulties associated
with the known formulae [4,5], there had not been any significant
progress for decades in an analytical attempt to make a break-
through. Recently such a breakthrough was achieved by Robledo
who was successful in deriving a new formula in terms of the Pfaf-
fian [6] with Fermion coherent states and Grassmann integral [7].
After his pioneering work, many studies followed by exploiting
these mathematical tools in the HFB matrix elements [8–11].

The latest focus in this research field is to find a formula to
evaluate HFB matrix elements with multiple quasi-particle excita-
tions [9–11] 〈φ′|cν ′

1
· · · cν ′

n′ c
†
ν1 · · · c†

νn |φ〉, where |φ〉 and |φ′〉 are dif-

ferent HFB states. The creation and annihilation operators for bare
particles are denoted by c† and c respectively, hence cν |0〉 = 0.
|0〉 stands for the true vacuum. These matrix elements have been
evaluated conventionally by the generalized Wick’s theorem. Re-
cently, alternative approaches [9–11] were obtained by means of
Fermion coherent states and Grassmann integral. The resultant for-
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mulae are expressed in terms of the Pfaffian, which can describe
the matrix elements in a more compact manner than those ob-
tained by the generalized Wick’s theorem. The new formulae over-
come a combinatorial complexity associated with practical appli-
cations of the generalized Wick’s theorem. (It is worth mentioning
that there was an attempt to derive a compact formula before the
publication of Robledo’s Pfaffian formula. Ref. [12] adapts Gaud-
in’s theorem in the finite-temperature formalism so as to derive
an equivalent formula, but it is not expressed in terms of the Pfaf-
fian.)

In this Letter, we would like to present another formula that
evaluates matrix elements of a unitary operator sandwiched by ar-
bitrary HFB states with multiple quasi-particle excitations,

〈φ|aν ′
1
· · ·aν ′

n′ [θ]a†
ν1 · · ·a†

νn |φ〉. (1)

The quasi-particle basis (a,a†) is obtained through a canonical
transformation (called the Bogoliubov transformation) of the bare-
particle basis (c, c†),

a†
ν =

M∑
i=1

(
Ui,νc†

i + V i,νci
)
, (2)

M is the dimension of the single-particle model space, which is
taken to be an even integer. Coefficients U and V in the expres-
sion above define the Bogoliubov transformation. HFB state |φ〉 is
also obtained through the Bogoliubov transformation applied to
the bare-particle vacuum |0〉, hence |φ〉 corresponds to the vac-
uum for the quasi-particles, or aν |φ〉 = 0. Indices ν1, . . . , νn and
ν ′

1, . . . , ν
′
n′ , attached to the creation and annihilation operators,
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specify quantum states in the quasi-particle basis. The symbol [θ]
stands for a unitary operator

[θ] ≡ e−iθ Ŝ

〈φ|e−iθ Ŝ |φ〉 ,
(3)

where Ŝ is a one-body operator expressed in the quasi-particle
basis [13], and θ is a parameter to specify an element in a group
produced by the generator Ŝ . Symbol [θ] for unitary operators is
indebted to Ref. [2].

As explained in Ref. [2], such matrix elements of unitary op-
erators shown in Eq. (1) are essential ingredients in the beyond-
mean-field theories, such as quantum-number projection. In the
case of angular momentum projection, the parameter θ corre-
sponds to the Euler angles and Ŝ to the angular momentum op-
erator Ĵ .

In order to derive a formula for this matrix element Eq. (1),
we will apply the Fermion coherent state and Grassmann integral.
As elucidated in previous studies, these two mathematical enti-
ties show a close affinity with the Pfaffian, and they can simplify
calculations involving many anti-commuting operators to a great
extent. It should be noted here that Hara and Iwasaki previously
investigated the mathematical structure of the matrix elements
Eq. (1) [2], in connection to the Projected Shell Model (PSM) [14].
PSM is basically a configuration mixing method with multi quasi-
particle states based on the HFB theory. In PSM, configuration
mixing is carried out with quantum-number projected HFB states
of multiple quasi-particle excitations. Hara and Iwasaki derived a
formula for the matrix elements Eq. (1) with the help of a theo-
rem presented by Balian and Brézin [15]. However, their formula
suffers from the problem of combinatorial complexity, originating
from the generalized Wick’s theorem. According to the theorem,
the matrix elements Eq. (1) involving n and n′ quasi-particle ex-
citations contain (n + n′ − 1)!! terms. In practice, the number of
terms becomes so large that it is difficult to write down matrix
elements explicitly with the Hara–Iwasaki formula for more than
four quasi-particle HFB states.

2. The Balian–Brézin decomposition

Following Ref. [15], a unitary operator [θ] in Eq. (3) can be ex-
pressed as a product of three operators in the quasi-particle basis,

[θ] = eB̂(θ)eĈ(θ)e Â(θ), (4)

with

Â(θ) =
∑
ν,ν ′

1

2
A(θ)ν ′,νaνaν ′ ,

B̂(θ) =
∑
ν,ν ′

1

2
B(θ)ν ′,νa†

νa†
ν ′ ,

Ĉ(θ) =
∑
ν,ν ′

(
ln C(θ)

)
ν,ν ′a

†
νaν ′ . (5)

We call Eq. (4) the Balian–Brézin decomposition. Matrices A(θ),
B(θ) and C(θ) in Eq. (5) correspond to contractions and can be
written with the help of the Bogoliubov transformation matri-
ces [2]

Aν,ν ′(θ) ≡ 〈[θ]a†
νa†

ν ′
〉 = (

V ∗(θ)U−1(θ)
)
ν,ν ′ ,

Bν,ν ′(θ) ≡ 〈
aνaν ′ [θ]〉 = (

U−1(θ)V (θ)
)
ν,ν ′ ,

Cν,ν ′(θ) ≡ 〈
aν [θ]a†

ν ′
〉 = (

U−1(θ)
)
ν,ν ′ . (6)

By inserting Eq. (4) into the matrix elements Eq. (1), we have

MI = 〈φ|aν ′
1
· · ·aν ′

n′ e
B̂(θ)eĈ(θ)e Â(θ)a†

ν1 · · ·a†
νn |φ〉. (7)

Hereafter, we omit symbol (θ) for the sake of brevity. For sub-
sequent conveniences, we introduce a shorthand notation J for
the indices of quasi-particle operators, as J = {ν1 · · ·νn}, J ′ =
{ν ′

1 · · ·ν ′
n′ } (ν1 < · · · < νn and ν ′

1 < · · · < ν ′
n′ ). These indices J and

J ′ are subsets of a set [M] = {1,2, . . . , M}, in which M represents
the number of elements in [M] and corresponds to the dimension
of the single-particle model space. Index I in Eq. (7) is defined as a
set I = {ν ′

1 · · ·ν ′
n′ , ν1 + M · · ·νn + M} and corresponds to a subset of

[2M] = {1,2, . . . ,2M}. With these notations, the matrix elements
Eq. (7) are expressed as

MI = 〈φ|(a · · ·a)−−→
J ′e

B̂ eĈ e Â(
a† · · ·a†)−→

J |φ〉 (8)

where (a · · ·a)−−→
J ′ and (a† · · ·a†)−→

J stand for aν ′
1
· · ·aν ′

n′ and a†
ν1 · · ·a†

νn ,
respectively.

When the order of a product is completely reversed, such an
order is denoted as

←−
J . The relation between

←−
J and

−→
J is given as

(a · · ·a)−→
J = (a · · ·a)←−

J (−)
1
2 n(n−1), (9)

where (a · · ·a)←−
J = aνn · · ·aν1 . Note that an additional phase emerges

in the right-hand side of the above equation due to anti-commuta-
tion.

3. Fermion coherent state and Grassmann integral

In the present Letter, we exclusively rely on Grassmann num-
bers ξ∗ and ξ . They satisfy the anti-commutation rules,

ξνξν ′ + ξν ′ξν = 0, (10)

ξ∗
ν ξ∗

ν ′ + ξ∗
ν ′ξ∗

ν = 0, (11)

ξνξ∗
ν ′ + ξ∗

ν ′ξν = 0, (12)

where indices ν,ν ′ run from 1 to M (1, . . . , M). With these Grass-
mann numbers, Fermion coherent states [7] in the quasi-particle
basis are defined as

|ξ 〉 = e− ∑
ν ξνa†

ν |φ〉, (13)

where the HFB state is normalized 〈φ|φ〉 = 1. This definition is
slightly different from the one introduced in Ref. [9], where the
operator and the vacuum are replaced as ci → aν and |0〉 → |φ〉,
respectively. By definition, Fermion coherent states are eigenstates
of the annihilation operator,

aν |ξ〉 = ξν |ξ〉. (14)

The adjoint variable ξ∗
i is also introduced in the eigenvalue equa-

tion,

〈ξ |a†
ν = 〈ξ |ξ∗

ν . (15)

The overlap between the HFB vacuum and the Fermion coherent
state is 〈φ|ξ〉 = 1. The closure relation [7] is expressed as∫

D
(
ξ∗, ξ

)
e−Σνξ∗

ν ξν |ξ〉〈ξ | = 1, (16)

where D(ξ∗, ξ) = ∏
α dξ∗

α dξα . Differential elements dξ and dξ∗ are
anti-commuting. Although this ordering for D(ξ∗, ξ) given in the
above closure relation is widely employed, we use other ordering
for the differential elements in the present study, which is

D
(
ξ∗, ξ

) = dξ∗−−−−→[M] dξ←−−−−[M] = dξ←−−−−[M] dξ∗−−−−→[M], (17)
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