
Estimates of the Vigdergauz constants for regular triangular honeycombs

Dag Lukkassen a,b,⇑, Guy B. Mauseth a, Annette Meidell a,b, Klas Pettersson a

a Narvik University College, P.O. Box 385, N-8505 Narvik, Norway
b Norut Narvik, Postboks 250, N-8504 Narvik, Norway

a r t i c l e i n f o

Article history:
Received 28 February 2011
Accepted 31 May 2011
Available online 6 July 2011

Keywords:
B. Mechanical properties
C. Computational modelling

a b s t r a c t

In this paper we study the effective elastic properties of regular triangular honeycombs. In particular we
obtain some simple approximate formulae for the corresponding Vigdergauz constants with accuracy
better than 1% for all densities.
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1. Introduction and main results

Consider a two-dimensional hexagonal symmetric and periodic
structure formed by an isotropic solid material with plane strain
bulk modulus K and shear modulus G. It is well-known that the
corresponding effective elastic properties of such a structure are
equal to that of a transversely isotropic homogeneous material
with in-plane elastic moduli (K⁄,G⁄). In [11], Vigdergauz showed
the following general relations between (K,G) and (K⁄,G⁄):
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where A1 and A2 are positive constants which depend only on the
geometry. These constants will be referred to as the Vigdergauz
constants.

In this paper we discuss a special type of such structures, namely
regular triangular honeycombs honeycomb structure, which are
obtained by replicating equilateral triangular cells (see Fig. 1a).
For low density triangular honeycombs there exist some simplified
formulae, which can be rewritten in the following form (c.f. [4,10]):
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Here, l is the height of one period of the structure and b is the thick-
ness of the cell walls (see Fig. 1b). Even though these formulae are

relatively correct when b/l� 1, they are clearly not on the form of
(1) and (2). This lack of consistency may be due to the fact that be-
fore 1999 nobody knew that the effective elastic moduli (K⁄,G⁄) and
the local moduli (K,G) were linked to each other by the strikingly
simple relations (1) and (2). Without this information it was prob-
ably tempting to ignore effects caused by the fact that the local
Poisson’s ratio may be non-zero. In this paper we adjust the simpli-
fied models behind these formulae and obtain new formulae of the
same simplicity, which fortunately happen to be of the form (1) and
(2). In fact, we find the following approximations of A1 and A2,
respectively:
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It turns out that Af ;i > Ai > Ai;HSþ , where Ai;HSþ is the Vigdergauz con-
stant corresponding to the upper Hashin–Shtrikman bounds for K⁄

(if i = 1) or G⁄ (if i = 2). By observing that the relative deviation be-
tween Af,i and Ai;HSþ vanishes as b/l ? 0, we are able to prove that
the triangular honeycomb becomes stiffest possible (among trans-
versely isotropic structures with the same density) as the density
decreases.

The above formulae turn out to be particularly useful for the
purpose of developing accurate formulae for the Vigdergauz con-
stants for arbitrary densities. By comparing Af,i with numerically
estimated values of Ai, the following improved formulae are found:
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where pc is the volume fraction of the connected material. The vol-
ume fraction as a function of the variable b/l and its inverse are
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The improved formula Aimp
f ;i , which is expressed by a Laurent polyno-

mial in the variable b/l, turns out to be relatively close to the true
values of Ai for all densities. In fact, the relative error is in principle
less than 1%.

The paper is organized as follows. In Section 2, the model prob-
lem is presented. The relevant results from the homogenization
theory applied to elasticity are also included. In Section 3, the
low-density estimates of the Vigdergauz constants are derived. In
Section 4, these estimates are compared with the optimal values
given in the Hashin–Shtrikman bounds. In Section 5, the estimates
Af,i are compared with numerically estimated values of Ai. The
numerical data are then used in Section 6 to find improved ver-
sions of the formulae for Af,i.

2. The model problem

The honeycomb is assumed to be locally isotropic and linearly
elastic. In the plane theory of elasticity such a material’s constitu-
tive equation of the stress r = (r11,r22,r12) and the strain
e = (e11,e22,c12) can be written on matrix form as

r ¼
K þ G K � G 0
K � G K þ G 0
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where K, G 2 R+ are the bulk and shear modulus in plane strain,
respectively. We have

K ¼ E
2ð1þ mÞð1� 2mÞ ;

and

G ¼ E
2ð1þ mÞ ;

where E is the Young’s modulus and m is the Poisson’s ratio. The
local bulk modulus K is related to the bulk modulus k in three
dimensions by K = k + G/3. The third component of the strain vector
c12 equals 2e12, where e12 is the shear strain. Expositions of the
linear theory of elasticity can be found in [6,7].

For one period of a periodic structure, see Fig. 1b, one can
consider the problem of finding the displacement which gives a

prescribed average strain. The solution of such a problem is known
to exist and it gives in this case an isotropic Cartesian tensor relat-
ing the average stress to the average strain. The tensor is called the
effective tensor. The relation can be written as follows with the
same matrix representation as was used above. Let the average
stress and the average strain be written hri = (hr11i, hr22i, hr12i)
and hei = (he11i, he22i, hc12i), respectively. We have the effective con-
stitutive relation
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where K⁄, G⁄ 2 R+ are called the effective bulk and shear modulus,
respectively. These are the macroscopic elastic properties of the
structure. For the facts mentioned above, we refer to [2,5,8].

Suppose that the structure is deformed in a way that makes the
strain vector periodic and such that he11i = he22i. Then Eq. (6) im-
plies that

K� ¼ hr22i
2he22i

: ð7Þ

On the other hand, if the deformation is such that the strain vector
is periodic and satisfies he11i = �he22i, Eq. (6) implies that
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: ð8Þ

Under the assumption of Eq. (6), the conditions that the average
strain should satisfy he11i = he22i or he11i = �he22i are equivalent to
restricting the average stress to satisfy hr11i = hr22i or hr11i =
�hr22i, respectively.

To simplify the analysis additional assumptions are made.
These assumptions will be referred to as the simplified model.
The hexagonal joint area, marked with dashed lines in Fig. 1b, is as-
sumed to be freely deformable under three restrictions. First, the
joint area is assumed to remain hexagonal but not necessarily reg-
ular. Secondly, the side lengths of the joint area are assumed to re-
main equal to the thicknesses of the connecting cell walls. Thirdly,
the cell walls are assumed to remain perpendicular to the walls of
the joint area. An illustration of the simplified joint area is shown
in Fig. 1c.

3. Estimates of the Vigdergauz constants

In this section estimates of the Vigdergauz constants will be
presented. The approach that will be used is to apply external loads
to the structure in the simplified model. This is done in such a way
that estimates of the effective bulk modulus K⁄ and the effective
shear modulus G⁄ are obtained from the ratio of the average strain
and the average stress. Then by using the relations (1) and (2) esti-
mates of the A1 and A2 follow.

Fig. 1. A regular triangular honeycomb with cell-wall length l and thickness b (a), the unit cell with the hexagonal joint area marked with dashed lines (b), and the simplified
joint area (c).
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