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With the availability of the new neutral pion photoproduction from the proton data from the A2 and
CB-TAPS Collaborations at Mainz it is mandatory to revisit Heavy Baryon Chiral Perturbation Theory
(HBChPT) and address the extraction of the partial waves as well as other issues such as the value of
the low-energy constants, the energy range where the calculation provides a good agreement with the
data and the impact of unitarity. We find that, within the current experimental status, HBChPT with the
fitted LECs gives a good agreement with the existing neutral pion photoproduction data up to ∼170 MeV
and that imposing unitarity does not improve this picture. Above this energy the data call for further
improvement in the theory such as the explicit inclusion of the �(1232). We also find that data and
multipoles can be well described up to ∼185 MeV with Taylor expansions in the partial waves up to first
order in pion energy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Chiral Perturbation Theory (ChPT) is an effective field theory
(EFT) of Quantum Chromodynamics (QCD) in the low-energy do-
main where quarks and gluons are confined into hadrons and con-
ventional perturbation theory cannot be directly applied. Due to
the spontaneous breaking of chiral symmetry in QCD the π meson
appears as a pseudoscalar Nambu–Goldstone boson [1] becom-
ing the carrier of the nucleon–nucleon interaction. However, when
fully relativistic spin-1/2 matter fields (i.e. nucleon) are introduced
in the theory the exact one-to-one correspondence between the
loop expansion and the expansion in small momenta and quark
masses is spoiled [2]. This is due to the fact that the nucleon mass
M does not vanish in the chiral limit. A consistent power count-
ing scheme known as Heavy Baryon Chiral Perturbation Theory
(HBChPT) [3] overcomes this difficulty considering the baryons as
heavy (static) sources. For π N scattering and pion photoproduction
HBChPT has been successful at describing experimental data in the
near threshold region [3,4]. In this Letter we address the question
of how well it works for the latest and most accurate �γ p → π0 p
data to date [5] and to provide an energy range where HBChPT
agrees with the latest pion photoproduction data — the recently
completed Mainz data for the differential cross sections dσ/dΩ
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and linear polarized photon asymmetries Σ for the �γ p → π0 p re-
action taken from threshold through the �(1232) region. This was
performed with a tagged photon beam with energy bins of 2.4
MeV. We also determined the low-energy constants (LECs) to see
if they are actually constant as the photon energy is increased. The
quality of the HBChPT fits — χ2 per degree of freedom (χ2/dof) —
are also compared to a simple empirical benchmark fit, a Taylor
expansion of the partial waves. The data in [5] are more accu-
rate than previous experiments and the first measurement of the
energy dependence of Σ . This has allowed an extraction of the
real parts of the four dominant multipoles for the first time — the
S-wave E0+ and the three P-wave multipoles P1,2,3 (E1+ , M1+ ,
M1−). This is a much more significant test of the agreement of
HBChPT with experiment. As the photon energy increases and the
calculations gradually stop agreeing with experiment we have de-
termined whether or not this is caused by one particular multipole.
This information, in addition to the behavior of the low energy
constants with photon energy provide clues about what improve-
ments are needed to make the HBChPT calculations more accurate.

2. Theoretical framework

Due to the symmetry breaking, the S-wave amplitude for the
γ p → π0 p reaction is small in the threshold region — vanishing
in the chiral limit [4]. Additionally, the P-wave amplitude is large
and leads to the �(1232) resonance at intermediate energies [6].
Hence, for the γ p → π0 p reaction the S- and P-wave contributions
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are comparable even very close to threshold [7] and even D waves
have an important early contribution due to the weakness of the S
wave [8]. The differential cross section and photon asymmetry can
be written in terms of electromagnetic responses

dσ

dΩ
(s, θ) = q

kγ
W T (s, θ) (1)

Σ(s, θ) ≡ σ⊥ − σ‖
σ⊥ + σ‖

= − W S(s, θ)

W T (s, θ)
sin2 θ (2)

where W T and W S are the electromagnetic responses, θ is the
center of mass scattering angle, kγ the center of mass photon
energy, q the pion momentum in the center of mass, and s the
squared invariant mass. The responses W T and W S are defined in
term of the electromagnetic multipoles:

W T = T0(s) + T1(s)P1(θ) + T2(s)P2(θ) + · · · (3)

W S = S0(s) + S1(s)P1(θ) + · · · (4)

where P j(θ) are the Legendre polynomials in terms of cos θ , the
dots stand for negligible corrections, and

Tn(s) =
∑

i j

Re
{
M∗

i (s)T ij
n M j(s)

}
(5)

Sn(s) =
∑

i j

Re
{
M∗

i (s)Sij
n M j(s)

}
(6)

where M j(s) = E0+ , E1+ , E2+ , E2− , M1+ , M1− , M2+ , M2− . The

coefficients T ij
n and Sij

n can be found in Appendix A in [9].
The partial waves (electromagnetic multipoles) are not observ-

ables and have to be extracted from the experimental data within
a theoretical framework (unless a complete experiment is possi-
ble [10]). In this Letter we employ three approaches to describe
S and P waves that we present in forthcoming paragraphs: Sec-
tion 2.1 HBChPT [11,12]; Section 2.2, Unitary HBChPT (U-HBChPT);
and Section 2.3, Empirical. In all cases D waves are incorporated
using the customary Born terms. Higher partial waves can be safely
dismissed in this energy region [9]. The conventions employed in
this Letter and further information on the structure of the observ-
ables in terms of the electromagnetic multipoles can be found in
[9].

2.1. HBChPT

The explicit formulae for the S and P multipoles to one loop
and up to O(q4) can be found in [11,12]. Due to the order-by-order
renormalization process six LECs appear: a1 and a2 associated with
the E0+ counter-term:

Ect
0+ = ea1ωm2

π0 + ea2ω
3, (7)

where ω is the pion energy in the center-of-mass; bp associated
with the P3 ≡ 2M1+ + M1− multipole together with ξ1 and ξ2 as-
sociated with P1 ≡ 3E1+ + M1+ − M1− and P2 ≡ 3E1+ − M1+ +
M1− , respectively. The c4 LEC associated with P1, P2, and P3
has been taken from [13] where it was determined from pion–
nucleon scattering inside the Mandelstam triangle. Some other pa-
rameters appear in the calculation, but these are fixed. The full
list is: the pion–nucleon coupling constant gπ N = 13.1; the weak
pion decay constant fπ = 92.42 MeV, together with the anomalous
magnetic moments of the proton and neutron, the nucleon axial
charge g A (which we fix using the Goldberger–Trieman relation
g A = gπ N fπ/M); and the masses of the particles. The pair (a1,a2)

LECs are highly correlated, r(a1,a2) = −0.99 [8,12], and it is more
convenient to use the pair of LECs (a+ = a1 + a2, a− = a1 − a2),

where a+ is the leading order for the counter-term close to thresh-
old (ω 	 mπ0 ) [8]. Henceforth, five LECs are fitted to the data
under this approach: a+ , a− , ξ1, ξ2, and bp .

2.2. U-HBChPT

From general principles such as time reversal invariance and
unitarity the S wave can be written as the combination of a
smooth part and a cusp part [9,14,15]

E0+ = eiδ0 [A0 + iβq+/mπ+], s > s(π+n)

thr

E0+ = eiδ0
[

A0 − β|q+|/mπ+
]
, s < s(π+n)

thr (8)

where δ0 is the π0 p phase shift (which is very small),
√

s is the

invariant mass,
√

s(π+n)

thr the invariant mass at the π+n thresh-

old, q+ is the π+ center-of-mass momentum, A0 is E0+ in the
absence of the charge exchange re-scattering (smooth part), and
β = Re[E0+(γ p → π+n)] × mπ+a(π+n → π0 p) parameterizes the
magnitude of the unitary cusp and can be calculated [14] on the
basis of unitarity. Eq. (8) takes the static isospin breaking (mass
differences) as well as π N scattering to all orders into account.
In the electromagnetic sector it includes up to first order in the
fine structure constant α. The π+ center-of-mass momentum, qπ+ ,
is real above and imaginary below the π+ threshold; this is a
unitary cusp whose magnitude is parametrized by β which can
be calculated [14] on the basis of unitarity and taking into ac-
count a theoretical evaluation of isospin breaking [16], obtain-
ing β = (3.35 ± 0.08) × 10−3/mπ+ where Re E0+(γ p → π+n) =
(28.06 ± 0.27 ± 0.45) × 10−3/mπ+ [17] and a(π+n → π0 p) =
(0.1195±0.0016)/mπ+ [18]. In HBChPT up to one loop and O(q4),
β is fixed by the imaginary part of E0+ — that is parameter-free —
providing βHBChPT = 2.71 × 10−3/mπ+ which is far away from the
unitary value. Because of the lack of unitarity of the S-wave am-
plitude [11] it is customary to substitute the S wave provided by
HBChPT by a unitary prescription [9,11,12]. However, in this Let-
ter instead of substituting the entire S wave for a prescription we
prefer to substitute only the cusp part in E0+ from HBChPT by
the cusp part of E0+ in Eq. (8), keeping the smooth part provided
by HBChPT. In this way we keep the E0+ counter-term and both
HBChPT and U-HBChPT approaches have the same LECs to fit to
the data.

2.3. Empirical fit

The empirical fit is parameterization of the S and P waves with
a minimal physics input: unitarity in the S wave through the β pa-
rameter and the angular momentum barrier. This is accomplished
with a Taylor expansion in the pion energy in the center of mass
ω up to first order on the smooth part of E0+ and Pi/q adding the
cusp part in Eq. (8) to the S wave and keeping the imaginary part
of the P waves equal to zero, in summary1

E0+ = E(0)
0+ + E(1)

0+
ω − mπ0

mπ+
+ iβ

qπ+

mπ+
(9)

Pi/q = P (0)
i

mπ+
+ P (1)

i

ω − mπ0

m2
π+

, i = 1,2,3 (10)

where E(0)
0+ , E(1)

0+ , P (0)
1 , P (1)

1 , P (0)
2 , P (1)

2 , P (0)
3 , and P (1)

3 are free pa-
rameters that will be fitted to the experimental data. We note that

1 The empirical parameterization in [5,9] expands on the photon energy in the
laboratory frame Eγ while we prefer to expand in the pion energy in the center
of mass frame ω in order to have direct comparison to HBChPT. Both approaches
render equally good description of the observables and provide the same multipoles.
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