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We construct static, asymptotically flat black hole solutions with scalar hair. They evade the no-hair
theorems by having a scalar potential which is not strictly positive. By including an azimuthal winding
number in the scalar field ansatz, we find hairy black hole solutions which are static but axially
symmetric only. These solutions possess a globally regular limit, describing scalar solitons. A branch of
axially symmetric black holes is found to possess a positive specific heat.
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1. Introduction

The energy conditions are an important ingredient of various
significant results in general relativity [1]. Essentially, they imply
that some linear combinations of the energy–momentum tensor
of the matter fields should be positive, or at least non-negative.
However, over the last decades, it has become increasingly obvious
that these conditions can be violated, even at the classical level.
Remarkably enough, the violation may occur also for the simplest
case of a scalar field (see e.g. [2] for a discussion of these aspects).

Once we give up the energy conditions (and in particular the
weak one), a number of results in the literature show that the
asymptotically flat black holes may possess scalar hair,1 which
otherwise is forbidden by a number of well-known theorems [4].
Restricting to the simplest case of a minimally coupled scalar field
with a scalar potential which is not strictly positive, this includes
both analytical [5–9] and numerical [10,11] results.

Interestingly, in the limit of zero event horizon radius, some of
these hairy black holes describe globally regular, particle-like ob-
jects, the so-called ‘scalarons’ [10]. At the same time, a complex
scalar field is known for long time to possess non-topological soli-
tonic solutions [12], even in the absence of gravity. These are the
Q-balls introduced by Coleman in [13]. Such configurations owe
their existence to a harmonic time dependence of the scalar field
and possess a positive energy density.

However, as argued below, the Q-balls can be reinterpreted as
non-gravitating scalarons. The scalar field is static in this case and
has a potential which takes negative values as well. As expected,
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1 One has to remark that the existence of black holes with scalar hair is perhaps
the mildest consequence of giving up the energy conditions, see e.g. the discussion
in [3].

the scalarons possess gravitating generalizations. However, differ-
ent from the standard Q-ball case [14], their regular origin can
be replaced with an event horizon. In this work we study such
solutions for the simple case of a massive complex scalar field
with a negative quartic self-interaction term in the potential. Apart
from spherically symmetric configurations, we construct solitons
and hairy black hole solutions which are static but axially sym-
metric only.

2. The model

Let us consider the action of a self-interacting complex scalar
field Φ coupled to Einstein gravity in four spacetime dimensions,

S =
∫

d4x
√−g

[
1

16πG
R

− 1

2
gμν

(
Φ∗

,μΦ,ν + Φ∗
,νΦ,μ

) − U

]
, (1)

where R is the curvature scalar, G is Newton’s constant and the
asterisk denotes complex conjugation. Using the principle of varia-
tion, one finds the coupled Einstein–Klein–Gordon equations

Eμν = Rμν − 1

2
gμν R − 8πGTμν = 0,

1√−g
∂μ

(√−g∂μΦ
) = ∂U

∂|Φ|2 Φ, (2)

where Tμν is the stress–energy tensor of the scalar field

Tμν = (
Φ∗

,μΦ,ν + Φ∗
,νΦ,μ

)

− gμν

[
1

2
gαβ

(
Φ∗

,αΦ,β + Φ∗
,βΦ,α

) + U

]
. (3)

In the above relations U denotes the scalar field potential, which,
in order to retain the U (1) symmetry of the whole Lagrangian,
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must be a function of |Φ|2. In what follows, we assume that U
can be written as

U =
∑
k�1

ck|Φ|2k, (4)

the k > 1 terms taking effectively into account various interactions.
Of interest here is the case of a potential which is not strictly posi-
tive definite. Then the polynomial F (x) = ∑

k�1 ckxk is negative for
some range of x > 0, which implies that at least one of coefficients
ck is smaller than zero. Since we assume2 Φ → 0 asymptotically,
the requirement to obtain a bound state imposes c1 = μ2 > 0, with
μ the scalar field mass.

3. Flat space solitons: Q-balls as scalarons

Let us start our discussion with the simple observation that
when ignoring the gravity effects, a class of solutions of the
model (1) is already known. We recall that in a flat spacetime
background, the Klein–Gordon equation possesses non-topological
soliton solutions–the so-called Q-balls, in which case the scalar
has a harmonic time dependence, Φ = φ(x)e−iwt [13] (with xμ =
(xa, t)). As a result, the solutions possess a nonvanishing conserved
Noether charge, Q = 2w

∫
d3 x|φ|2. Then, even though Φ depends

on time, the energy–momentum tensor T ν
μ is time independent

and the effective action of this model reads

S Q = −
∫

d3x dt
[
φ∗

,aφ
,a − w2|φ|2 + U Q

]
. (5)

The Q-balls have been extensively discussed in the literature (see
the review work [12,15]) and they have found a variety of phys-
ically interesting applications.3 If one assumes a potential of the
form (4), then U Q necessarily contains powers of |Φ|2 higher
than two, the usual choice in the literature being U Q = μ2|Φ|2 −
λ|Φ|4 + ν|Φ|6, with λ > 0, ν > 0 and λ2 < 4μ2ν for a positive po-
tential.

However, one can see from (5) that w2 acts as an effective
tachyonic contribution to the mass term, and thus it can be ab-
sorbed into μ2. The scalar field is static in this case, Φ = φ(xa)

and thus the Noether charge vanishes. Therefore all Q-ball solu-
tions in a flat spacetime background can be interpreted as static
scalar solitons, i.e. they become scalarons in a model with a shifted
scalar field mass, for a new potential U = U Q − w2|φ|2. Note
that although φ satisfies the same equation as before, the energy–
momentum tensor and the total mass of the scalarons are differ-
ent. Also, as implied by the Derick-type virial identity
∫

d3x
[
φ∗

,aφ
,a + 3U

] = 0, (6)

the redefined potential U is necessarily negative for some range
of |φ|2 which is realised by the solutions. However, the scalarons’
total mass is strictly positive,

M =
∫

d3x
[
φ∗

,aφ
,a + U

] = 2

3

∫
d3xφ∗

,aφ
,a. (7)

Finally, we mention also that the mass of the scalarons is fixed
by the mass M Q and the Noether charge Q of the Q-balls, M =
M Q − w Q .

2 This can always be realized via a redefinition of the scalar field.
3 For example, the Q-ball solutions appear in supersymmetric generalizations of

the standard model [16]. Also, they may be responsible for the generation of baryon
number or may even be regarded as candidates for dark matter [17].

4. Spherically symmetric, gravitating solutions

However, the curved spacetime scalarons cannot be interpreted
as boson stars and thus require a separate study. For example,
following [14], one can show that, even in the absence of backre-
action, one cannot add a black hole horizon inside a Q-ball4 (this
follows essentially because a Q-ball possesses an e−iwt time de-
pendence and t → ∞ at the horizon of a black hole). However,
this obstruction does not apply to scalarons, which possess finite
energy, regular generalizations also for a static black hole back-
ground.

Let us start with a discussion of the spherically symmetric grav-
itating solutions of the model (1). These configurations are easier
to study and some of their properties seem to be generic. A suffi-
ciently general metric ansatz in this case reads

ds2 = grr dr2 + gΩΩ dΩ2
2 + gtt dt2, (8)

(with dΩ2
2 = dθ2 + sin2 θ dϕ2), and the scalar field is a function of

r only, Φ = Z(r). One possible direction here is to choose a metric
gauge with −gtt = 1/grr = V (r), gΩΩ = P 2(r). Then the Einstein
equations imply the relation P ′′

P + 8πG Z ′ 2 = 0 (where the prime
denotes a derivative with respect to r). The approach taken in [5,6]
(see also [7]) is to postulate an expression for the scalar field and
to use this relation to derive P . In the next step, the remaining
Einstein equations are used to reconstruct the scalar potential U
and the metric function V compatible with Z and P . This approach
has the advantage to lead to partially closed form solutions, but
the resulting expressions are very complicated; also the potential
cannot be written in the form (4).

In what follows we solve the field equations numerically
for a given potential. In this case it is convenient to work in
Schwarzschild-like coordinates with

grr = 1

N(r)
, gΩΩ = r2,

gtt = −N(r)σ 2(r), with N(r) = 1 − 2m(r)

r
, (9)

where m(r) may be interpreted as the total mass–energy within
the radius r; its derivative m′ is proportional to the energy density
ρ = −T t

t . Then the field equations (2) reduce to

m′ = 4πGr2(N Z ′ 2 + U
)
, σ ′ = 8πGrσ Z ′ 2,

Z ′′ +
(

σ ′

σ
+ N ′

N
+ 2

r

)
Z ′ − 1

N

∂U

∂ Z 2
Z = 0. (10)

For a generic U , it is possible to write an approximate form of the
solutions close to the horizon (or at the origin) and also for large r.
These asymptotics are connected by constructing numerically the
solutions, which require to specify the expression for the scalar
field potential.

The horizon of the black holes is located at r = rH > 0, where
the solutions have a power-series expansion

m(r) = rH

2
+ m1(r − rH ) + · · · ,

σ (r) = σ0 + 8πGσ0rH z2
1(r − rH ) + · · · ,

Z(r) = z0 + z1(r − rH ) + · · · , (11)

in terms of two arbitrary parameters Z(rH ) = z0 and σ(rH ) = σ0
(with m1 = 4πGr2

H U (z0), and z1 = rH
1−2m1

∂U
∂ Z 2 |z0 z0). One can write

an approximate form of the solutions also for r → ∞, with

4 Note, however, the boson shells harbouring black holes in [18]. These solutions
require a V -shaped scalar potential which is not of the form (4).
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