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We investigate the occurrence of bifurcations in the dynamical trajectories depicting central nuclear
collisions at Fermi energies. The quantitative description of the reaction dynamics is obtained within
a new transport model, based on the solution of the Boltzmann-Langevin equation in three dimensions,
with a broad applicability for dissipative fermionic dynamics.

Dilute systems formed in central collisions are shown to fluctuate between two energetically favourable
mechanisms: reverting to a compact shape or rather disintegrating into several fragments. The latter
result can be connected to the recent observation of bimodal distributions for quantities characterising
fragmentation processes and may suggest new investigations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Phase transitions are general phenomena occurring in interact-
ing many-body systems [1-4]. Over the past years, many efforts
have been devoted to the identification of new features related to
finite-size effects. As shown by recent thermodynamical analyses,
first-order phase transitions in finite systems are characterised by
negative specific heat and bimodal behaviour of the distribution
of the order parameter [5,6]. The latter physically corresponds to
the simultaneous presence of different classes of physical states for
the same value of the system conditions that trigger the transition
(like the temperature, for instance).

In particular, the appearance of phase transitions from the lig-
uid to the vapour phases has been widely investigated in the
context of the nuclear multifragmentation phenomenon [7,8,4,9].
Indeed, due to the analogies between the nuclear forces and the
Van-der-Waals interaction, the nuclear matter equation of state
(EOS) foresees such a possibility [10,11]. The theoretical findings
cited above have stimulated corresponding thermodynamical anal-
yses of the properties of the products issued from nuclear re-
actions at Fermi energies. Under suitable conditions, a bimodal
character of experimental observables, such as the size of the heav-
iest cluster produced in each collision event [12], or the asym-
metry between the charges of the two heaviest reaction prod-
ucts [13] has been revealed. Many investigations have also been
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focused on the complex nuclear many-body dynamics, to probe
the reaction mechanisms governing the occurrence of phase transi-
tions [14-17]. Within such a context, nuclear fragmentation stud-
ies at intermediate energies (above 50 MeV per nucleon) have
recently pointed out that bimodality could have a dynamical ori-
gin, related to the fragment-formation mechanism [18], without
necessarily requiring the reaching of thermodynamical equilib-
rium.

From a general point of view, interacting many-body systems
may experience a very rich dynamics, ranging from mechanisms
dominated by one-body (mean-field) effects to phenomena gov-
erned by strong fluctuations and correlations. In the regime of low-
energy collective processes, nuclear dynamics presents a rather
stable character; this is the domain where the fluctuation mech-
anism can be described in the small-amplitude limit, restrict-
ing to mean-field (quantum) fluctuations of collective observ-
ables [19,20]. This limit is exceeded when violent perturbations,
like for instance dissipative heavy-ion collisions, bring the system
beyond the one-body collective dynamics, with two-body nucleon
collisions and correlations playing an important role. Along the
compression-expansion path traced by the nuclear reaction, fluctu-
ations introduce the anisotropy seeds from which ‘nuclear droplets’
can develop. More precisely, the system may access mechanically
unstable regions of the EOS, called spinodal, where a density rise is
related to a pressure fall; there, phase-space fluctuations are even
amplified, leading to phase separation [17,8]. As soon as a mottling
pattern stands out at low density, i.e. at the boundary of the phase
separation, a bundle of bifurcations into a variety of different dy-
namical paths may set in.
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2. The Boltzmann-Langevin-One-Body model

The aim of this Letter is to further investigate the dynamical
trajectory of disassembling nuclear systems, seeking for features
associated with phase transitions. In particular, we will explore the
possible occurrence of bifurcation patterns and bimodal behaviour
in central heavy-ion reactions at beam energies around the multi-
fragmentation threshold.

This study is undertaken in the framework of a new numeri-
cal implementation of the Boltzmann-Langevin (BL) equation, well
suited to describe out-of-equilibrium processes, such as nuclear
collisions: the Boltzmann-Langevin-One-Body (BLOB) model. The
BL equation describes the time evolution of the semiclassical one-
body distribution function f(r,p,t) in response to the mean-field
potential, incorporating the effect of fluctuations and correlations
due to hard two-body scattering [21-24].

Hence the distribution function f evolves according to the ac-
tion of the effective Hamiltonian H[f], the average Boltzmann col-
lision integral I[ f], and the fluctuating term SI[ f] as:

f=0f—{HIfL fF} =111+ 8If1. (1)

This form indicates that the residual interaction, represented by
the right-hand side of Eq. (1), is expressed in terms of the one-
body distribution function f.

Like in standard transport approaches [25], we sample the dy-
namics through the test-particle method, under the assumption of
spatial and temporal locality of the two-body collisional process.
Niest particles per nucleon are employed. The Boltzmann-Langevin
theory describes fluctuations of f on a size scale of h3, but it
leaves the shape of such a phase-space volume arbitrary (see the
discussion in Ref. [26]). This same arbitrarity characterises other
molecular-dynamics or Boltzmann-like approaches. In this respect,
we chose to follow the prescription of Bauer and Bertsch [27]:
in order to solve the BL equation, they proposed to define nucleon
wave packets by organising test particles in phase-space agglom-
erates of Niest elements. However, in Ref. [27] Pauli blocking was
checked only for the centroids of the nucleon clouds: the effect
of such approximation on the fermionic dynamics was analysed
in Refs. [23,28], where it was concluded that an incomplete treat-
ment of Pauli blocking affects the mechanism of fluctuation de-
velopment. The above recommendation was taken into account in
Ref. [26], in treating the schematic case of nuclear matter in a pe-
riodic box: such approach confirmed that an accurate treatment
of the Pauli blocking is the key for correctly describing the fluc-
tuation mechanism in full phase space. By further improving the
above approach in a full model for heavy-ion collisions, we built
a novel numerical procedure where nucleon-nucleon (N-N) corre-
lations are implemented by accurately treating the Pauli-blocking
factors of agglomerates of Nt elements of identical isospin. This
arrangement, which simulates nucleon wave packets, is redefined
at successive time steps and locally, for couples of colliding ag-
glomerates. According to this rescaling and for elastic N-N colli-
sions only, the average rate of change of the occupancy f, around
the phase-space location (rq, pg) at a given time takes the form:

fa(ra,pa)zg/ %/d{z W (AB<CD) F (AB—CD), (2)

where g denotes the degeneracy, and integrations are over mo-
menta pp and scattering angles £2. The first integration argument
is the symmetric transition rate from an intermediate state AB to
a final configuration CD. To select the test particles defining the
nucleon wave packets A and B, we adopt the following procedure:

we consider a sphere, centred at the position rg, with radius equal
to the scattering distance, associated with the free elastic N-N
cross section at Fermi energies (taken equal to 50 mb); among all
test particles inside the sphere, we pick up the Nest closest parti-
cles to the elements a and b in momentum space, respectively. The
final state is represented by c € C and d € D. The transition rate is
obtained by averaging over all couples of test particles involved
in the transition X = (AB — CD), in terms of relative velocity and
differential N-N cross section:

W (a8o0) = (1va — v51 32} = (W (aberca)) (3)
N = a b do . = abecd)) .
The second integration argument contains the product of occupan-
cies of the entire agglomerates fs p and of the associated vacan-

cies fa.p:

F(aB—~D) = fa fafcfo — fafsfcfo = (F(ab—cd))s. (4)

Rewritten in terms of test-particles, the representation of
Eq. (4) indicates that only the fraction of the packets which are
really modified by the scattering can significantly contribute to the
transition probability, while overlapping volumes contribute to the
Pauli-blocking factors.

On this basis, full phase-space fluctuations are introduced in
the equation of motion by moving simultaneously the test-particle
agglomerates, in analogy with the extended-TDHF procedure of
including perturbations in the Slater configuration [29]. The scat-
tering is decided by confronting the probability W x F with a
random number and scanning the entire phase space in search of
collision configurations at successive time steps. Since all test par-
ticles belonging to the agglomerates A and B can be reconsidered
as starting points of new collision processes, the scattering prob-
ability has to be suitably rescaled, dividing it by NZ. Once the
sorting allows for a scattering to occur, modulation functions are
applied to precisely adapt the density profile of final-states to the
available vacancy profile fa._ p, with the requirement of imposing
the most compact configuration compatible with the constraint of
energy conservation [30]; the resulting occupation functions of the
modulated final-state density profiles (fa.p)m should approach
unity.

The extension of the wave packets makes necessary to pay spe-
cial attention to scatterings close to the surface of the system,
i.e. occurring across potential boundaries: confronting the shape
of the wave packet to the shape of the surface, the blocking fac-
tors are increased in proportion to the spread of the nucleon
packet outside of the boundary (similarly to what is done in some
molecular-dynamics approaches [14]).

It occurs in some situations, for instance when low densities
are attained, that the nuclear system is brought to explore regions
of the phase diagram where it becomes unstable against density
fluctuations, like the spinodal region. The action of the BL term
results in agitating the density profile over several wave lengths.
It can be proven for the proposed BL approach (through an analy-
sis of the linear response in the mean field, see Refs. [31,17]) that
the amplitude of the unstable modes grows according to the spe-
cific dispersion relation associated with the employed mean-field
interaction.

3. Application to head-on heavy-ion collisions at Fermi energies

In the following, the BLOB model is applied to a highly con-
straining phenomenology: the low-energy threshold for multi-
fragmentation in head-on heavy-ion collisions at Fermi energies.
We will also refer to results of the so-called Stochastic Mean
Field (SMF) model [24,17], that corresponds to an approximate
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