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We investigate the physical implications of formulating the electroweak (EW) part of the Standard Model
(SM) in terms of a superconnection involving the supergroup SU(2/1). In particular, we relate the ob-
served Higgs mass to new physics at around 4 TeV. The ultraviolet incompleteness of the superconnection
approach points to its emergent nature. The new physics beyond the SM is associated with the emergent
supergroup SU(2/2), which is natural from the point of view of the Pati–Salam model. Given that the
Pati–Salam group is robust in certain constructions of string vacua, these results suggest a deeper connec-
tion between low energy (4 TeV) and high energy (Planck scale) physics via the violation of decoupling
in the Higgs sector.
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Introduction and overview

The Standard Model (SM) of particle physics is a phenomenally
successful theory whose last building block has recently been de-
tected [1,2]. In light of the apparent discovery of the Higgs boson,
we address the connection between its mass and the structure of
the electroweak (EW) sector of the SM, and argue that it points
to some very exciting new physics at a rather low energy scale of
4 TeV.

A long time ago, Ne’eman [3] and Fairlie [4] independently dis-
covered the relevance of a unique SU(2/1) supergroup structure
to SM physics. In this formalism, the even (bosonic) part of the
SU(2/1) algebra defines the SU(2) × U (1) gauge sectors of the
SM, while the Higgs sector is identified as the odd (fermionic)
part of the algebra. Although the model gives the correct quan-
tum numbers of the SM, and it represents a more unified-hence
more aesthetic-version of the SM, it suffers from the violation of
the spin-statistic theorem, a common problem seen in the models
using supergroups.1

In this work we adopt the superconnection approach of Ne’e-
man and Sternberg [5] who observed that the SUL(2) × U Y (1)

gauge and Higgs bosons of the SM could be embedded into a
unique SU(2/1) superconnection, and the quarks and leptons into
SU(2/1) representations [6,7]. SU(2/1) in this formalism is not
imposed as a symmetry; it is rather only the structure group of
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1 For example, there are anticommuting Lorentz scalars (the Higgs fields) which

represent ghost-like degrees of freedom in the model.

the superconnection. Therefore, the SU(2/1) structure can be in-
terpreted as an emergent geometric pattern that involves the EW
part of the SM, which avoids the problems with the ghosts.

The formalism fixes the ratio of the SUL(2) × U Y (1) gauge cou-
plings, and thus the value of sin2 θW , and the quartic coupling of
the Higgs. The value of sin2 θW selects the scale Λ ∼ 4 TeV2 at
which the superconnection relations can be imposed, and renor-
malization group (RG) running leads to a prediction of the Higgs
mass. However, the claim of Refs. [6,7] that the predicted Higgs
mass is around 130 GeV turns out to be incorrect.

In this Letter, we point out that the SU(2/1) superconnection
approach predicts the mass of the Higgs to be 170 GeV, which
obviously disagrees with observation. Given the well-known issue
with the ultraviolet incompleteness of the SU(2/1) approach [6],
which implies the emergent nature of this description, we should
have no qualms in introducing new physics to fix the Higgs mass.

Here, we note a connection with the Spectral SM of Connes
and collaborators [8,9] in which spacetime is extended to a prod-
uct of a continuous four dimensional manifold by a finite discrete
space with non-commutative geometry. The SM particle content
and gauge structure are described by a unique geometry, where
the Higgs appears as the connection in the extra discrete dimen-
sion [10]. Curiously, the original Higgs mass prediction of the
Spectral SM was also 170 GeV [11], despite the fact that the
boundary conditions imposed on the RG equations were quite dif-
ferent: in the Spectral SM, the usual SO(10) relations among the
gauge couplings are imposed at the GUT scale. In a recent paper

2 This scale is updated from the 5 TeV in Ref. [6] using more recent determina-
tions of the gauge couplings. The difference does not play a noticeable role in the
prediction of the Higgs mass.
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[12] Chamseddine and Connes isolate a unique scalar degree of
freedom that is responsible for the neutrino Majorana mass in
their approach, which, when correctly coupled to the Higgs field,
can reduce the mass of the Higgs boson to the observed value,
125–126 GeV.3

We argue that a similar ‘fix’ works for the superconnection for-
malism: one needs to introduce extra scalar degrees of freedom
which modify the RG equations. We further point out that this can
be accomplished by the embedding of SU(2/1) into SU(2/2), and
thus, in effect, a left–right (LR) symmetric extension of the EW
sector [13], which is also natural from the point of view of the
Pati–Salam model [14]. The SU(2/2) formalism, as in the SU(2/1)

case, selects the scale Λ ∼ 4 TeV via the value of sin2 θW . There-
fore, 4 TeV in this formalism is the prediction for the energy scale
of new physics, which is the LR symmetric model in this case.

We also note the peculiarity of the Higgs sector, which due
to the relation between the coupling and the mass, violates de-
coupling [15]. When interpreted from either the emergent super-
connection or the non-commutative geometry viewpoint, this vi-
olation of decoupling offers an exciting connection between the
SM and short distance physics, such as string theory, via the non-
decoupling of the 4 TeV and the Planck scales.

In particular, the embedding of SU(2/1) into SU(2/2) would be
interesting from the point of view of string vacua, where it has
been observed that the Pati–Salam group appears rather ubiqui-
tously in a large number of vacua [16]. Though we lack a funda-
mental understanding of this phenomenon, it is quite intriguing in
our context as it would point to a new relationship between low
energy (SM-like) and high energy physics (quantum-gravity-like)
which is not seen in the standard effective field theory approach
to particle physics.

The SU(2/1) formalism and the Higgs mass

Here we summarize the superconnection approach to the SM
based on the supergroup SU(2/1) [6,7]. Obviously, this supergroup
has as its bosonic subgroup the EW gauge group SU(2)L × U (1)Y .
What is highly non-trivial is that the embedding of SU(2)L ×U (1)Y

into SU(2/1) also gives the correct quantum numbers for all the
physical degrees of freedom. Furthermore, the Higgs sector comes
out naturally as a counterpart of the gauge sector. These have
natural analogs in the Spectral SM as well [8,9,12], as already em-
phasized in the conclusion to the review Ref. [6]. We concentrate
on the superconnection formalism which should be understood as
an emergent framework, because of the fundamental ultraviolet in-
completeness of gauged supergroup theories.

We start by defining the supercurvature as F = dJ + J · J
where J is the superconnection, which is of the form

J =
[

M φ

φ N

]
. (1)

Since we would like to embed SUL(2) × U Y (1) and the Higgs into
SU(2/1), M and N are respectively 2 × 2 and 1 × 1 g-even sub-
matrices valued over one-forms, while φ and φ are respectively
2 × 1 and 1 × 2 g-odd submatrices valued over zero-forms. The
superconnection J is written as J = iλa

s Ja , a = 1,2, . . . ,8. The
generators λa

s are matrices with supertrace zero. Therefore, they
are the usual SU(3) λ-matrices except for λ8

s which is

3 Given the similarities between the outcomes of the Spectral Model of Connes
and Chamseddine [12] and the superconnection formalism, there may be a relation
between these models.

λ8
s = 1√

3

[−1 0 0
0 −1 0
0 0 −2

]
. (2)

To obtain the superconnection we need to make the identifications
J i = W i (i = 1,2,3) and J 8 = B , where W i and B are one-form
fields corresponding to the SUL(2) and U Y (1) gauge bosons. The
zero-form fields are identified as J 4 ∓ i J 5 = √

2φ± , J 6 − i J 7 =√
2φ0, and J 6 + i J 7 = √

2φ0∗ .4 Then, the superconnection is

J = i

[W − 1√
3

B · I
√

2Φ
√

2Φ† − 2√
3

B

]
. (3)

Here, W = W iτ i (where τ i are the Pauli matrices) and I is a 2 × 2
unit matrix, and Φ = [φ+ φ0]T. To obtain the supercurvature F ,
we recall the rule for supermatrix multiplication [5,7][

A C
D B

]
·
[

A′ C ′
D ′ B ′

]
=

[
A ∧ A′ + (−1)|D ′|C ∧ D ′ A ∧ C ′ + (−1)|B ′|C ∧ B ′
(−1)|A′|D ∧ A′ + B ∧ D ′ (−1)|C ′|D ∧ C ′ + B ∧ B ′

]
(4)

where |A| denotes the Z2 grading of the differential form A.
Then, the supercurvature (after introducing the dimensionless cou-
pling g , J → gJ ) reads as

F = ig

[
F W − 1√

3
F B · I + 2igΦΦ†

√
2DΦ

√
2(DΦ)† − 2√

3
F B + 2igΦ†Φ

]
(5)

where DΦ = dΦ + igWΦ + ig 1√
3

BΦ , F B = dB and F W =
(F W )kτ k = [dW k + igε i jk W i ∧ W j]τ k . The action reads as follows

S =
∫ −1

4g2
Tr

[
F ·F	

]
=

∫ (
1

2

[−(F W )i ∧ (
F ∗

W

)i − F B ∧ F ∗
B

]
+ (DΦ)† ∧ (DΦ)∗ − λ

(
Φ†Φ

) ∧ (
Φ†Φ

)∗
)

, (6)

where the 	 on F	 denotes taking the Hermitian conjugate of the
supermatrices and the Hodge dual (denoted as ∗) of the differ-
ential forms, and λ ≡ 2g2. Note that we need to break SU(2/1)

explicitly in order to introduce the Higgs mass. In 4 dimensions
we have the following explicit form of the Lagrangian (given the
metric gμν = diag(1,−1,−1,−1)):

L = −1

4
F i

W μν F iμν
W − 1

4
F Bμν F μν

B

+ (DμΦ)†(DμΦ
) − λ

(
Φ†Φ

)2
. (7)

Note that the explicit forms of the curvature strengths and the
covariant derivatives have the standard forms: F i

W μν = ∂μW i
ν −

∂ν W i
μ + 2igε jki W j

μW k
ν , F Bμν = ∂μBν − ∂ν Bμ and DμΦ = ∂μΦ +

ig(τ · Wμ)Φ + ig′BμΦ , with g′/g = 1/
√

3. To switch to the com-
mon SM convention we rescale g and g′ as g, g → g/2, g′/2
(which is the missing part in [7]) which also changes our con-
straint at the symmetry breaking energy to λ = g2/2.5 Now we
address the prediction for the Higgs mass. In what follows we use
the relation M2

H = 8M2
W (λ/g2) and the RG equations for λ and top

Yukawa coupling gt which are

4 Note that ∗ , which we will use to denote the Hodge product later in the Letter,
here denotes taking complex conjugate of a field.

5 If we do not make these rescalings at this point then we need to make appro-
priate ones in Eq. (8).
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