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We show that the low-momentum behavior of the lattice Landau-gauge gluon and ghost propagators
is sensitive to the lowest non-trivial eigenvalue (λ1) of the Faddeev–Popov operator. If the gauge
fixing favors Gribov copies with small λ1 the ghost dressing function rises more rapidly towards zero
momentum than on copies with large λ1. This effect is seen for momenta below 1 GeV, and interestingly
also for the gluon propagator at momenta below 0.2 GeV: For large λ1 the gluon propagator levels out
to a lower value at zero momentum than for small λ1. For momenta above 1 GeV no dependence on
Gribov copies is seen. Although our data is only for a single lattice size and spacing, a comparison
to the corresponding (decoupling) solutions from the DSE/FRGE study of Fischer, Maas and Pawlowski
(2009) [22] yields already a good qualitative agreement.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lattice calculations of the Landau-gauge gluon, ghost and quark
propagators have attracted quite some interest during the last
15 years. Staunch supporters of pure lattice QCD (LQCD) may
wonder about the enthusiasm with which such calculations have
been performed and discussed in the past, in particular, as LQCD
comes with the distinct advantage that one does not need to fix
a gauge. This holds true, however, only as long as one is inter-
ested in gauge-invariant quantities. But besides LQCD there are
also other (sometimes better suited) frameworks to tackle nonper-
turbative problems of QCD, and these require the exact knowledge
of QCD’s elementary two and three-point functions in Landau or
other gauges.

Two continuum functional methods one has to mention here
are the efforts to solve the infinite tower of Dyson–Schwinger
equations (DSEs) of QCD or, likewise, the corresponding Func-
tional Renormalization Group Equations (FRGEs) (see, e.g., the re-
views [1–8] and references therein). Both these methods imply
fixing a gauge (and often the Landau gauge is chosen for simplic-
ity), but more importantly, these methods also require a truncation
of the infinite system of equations to enable finding a numerical
solution. These truncations are a potential source of error, which
why corresponding (volume and continuum extrapolated) lattice
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results are so essential to render these truncations harmless or to
even substitute parts of the DSE (or FRGE) solutions by (interpo-
lated) nonperturbative data.

In what concerns the Landau-gauge gluon and ghost propaga-
tors, lattice results have helped much to improve truncations over
the years. Currently, the continuum and lattice results overlap for
a wide range of momenta, showing nice consistency among the so
different approaches to QCD. Admittedly, the currently used trun-
cations are still not perfect, as seen, for example, for the gluon
propagator whose DSE solutions differ from the corresponding lat-
tice or FRGE results in the intermediate momentum regime (i.e.,
for momenta 0.5–3 GeV), whereas FRGE and lattice results agree
much better there (see, e.g., Fig. 2 in [9]). But this situation will
certainly improve, as it did in the past (see, e.g., [10] for recent
progress).

Another regime that remains to be fully settled yet is the low
(infrared) momentum regime. About the infrared behavior of the
gluon and ghost propagators in Landau gauge there has been much
dissent in the community and it is difficult to assess on the lattice
also. Currently, all lattice studies agree upon a gluon propagator
and ghost dressing function which are (most likely) finite in the
zero-momentum limit (see, e.g., [11–19]).1 DSE and FRGE stud-
ies [20–23], on the other hand, assert that this infrared behavior
is not unique, but depends on an additional (boundary) condition

1 Current lattice results for this regime are for finite lattice spacings and volumes
only, and also the Gribov problem is only partially understood.

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2013.08.017

http://dx.doi.org/10.1016/j.physletb.2013.08.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:andre.sternbeck@ur.de
http://dx.doi.org/10.1016/j.physletb.2013.08.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2013.08.017&domain=pdf


A. Sternbeck, M. Müller-Preussker / Physics Letters B 726 (2013) 396–403 397

on the ghost dressing function at zero momentum, J (0). Explicitly,
in Refs. [22,23], it is shown that for J−1(0) = 0 one finds the so-
called scaling behavior for the gluon and ghost propagators at low
momentum, as it was first found in [24], while for finite J (0), one
finds a family of decoupling solutions for the DSEs and FRGEs, in
qualitative agreement with DSE solutions proposed in the studies
of Refs. [25–30], and with lattice results. For momenta above 1 GeV
both types of solutions are practically indistinguishable. We inter-
pret this ambiguity in the infrared as a remnant of the Gribov
ambiguity of the Landau gauge condition, which is lifted by fix-
ing J−1(0) to a constant.

In this Letter we will show that a part of this one-parameter
family of decoupling solutions can be seen on the lattice, at least
qualitatively and as far as it is possible on a finite and rather
coarse lattice. Our approach also allows only for mild variations of
the gluon and ghost propagators. Nonetheless, after outlining some
technical details in the next section and a discussion about the
distribution of the lowest non-trivial eigenvalue of the Faddeev–
Popov (FP) operator, λ1, on different Gribov copies (Section 3),
we will demonstrate in Section 4 that the decoupling-like behav-
ior of the lattice gluon and ghost propagators can be changed
by a (yet simple-minded implementation of a) constraint on λ1.
Changes take place only in the low-momentum regime, but inter-
estingly in a similar manner as one expects from the DSE/FRGE
study [22], where a condition on J (0) was used to change the
low-momentum behavior.2 Specifically, we show that on Gribov
copies with small λ1 the ghost dressing function at low momenta
rises more rapidly towards zero momentum than on copies with
large λ1. Interestingly, a similar (though less pronounced) Gribov-
copy effect is seen for the gluon propagator at low momentum.
Qualitatively, our data thus resembles the change of the gluon and
ghost dressing functions as expected from [22] for the correspond-
ing decoupling solutions.3

Note that we still find Gribov copies by a maximization of the
lattice Landau-gauge functional, but we are not interested in find-
ing Gribov copies with large gauge-functional values, but on copies
with comparably small (or large) λ1, irrespective of the functional
value. On Gribov copies with large gauge-functional values we see
both propagators to rise less rapidly towards zero momentum, con-
sistent with what was found in the past [11,31–34]

We should also mention here that similar effects were seen for
the B-gauges by Maas [35]. For these gauges, one selects Gribov
copies based on the ratio of the ghost dressing function at a small
and a large lattice momentum on a particular copy. By construc-
tion the ghost dressing function in these gauges is then clearly
enhanced or suppressed at low momenta. It remains to be seen if
corresponding effects become clear also for the gluon propagator.
The current data suggests, also this approach may reproduce a part
of the family of decoupling solutions on the lattice [36,37].

2. Simulation details

Our study is based on 80 thermalized gauge field configu-
rations, generated with the usual heatbath thermalization and
Wilson’s plaquette action for SU(2) lattice gauge theory. The lat-
tice size is 564 and the coupling parameter β = 2.3. To reduce
autocorrelations, configurations are separated by 2000 thermaliza-
tion steps, each involving four over-relaxation and one heatbath
step. For every configuration there are at least Ncopy = 210 gauge-
fixed (Gribov) copies, all fixed to lattice Landau gauge using an

2 Note that in [22] the ghost dressing function is denoted G .
3 We thank C. Fischer for providing us access to their (decoupling) solutions in-

cluding those for smaller J (0) not shown in [22].

optimally-tuned over-relaxation algorithm for the gauge fixing that
finds local maxima of the lattice Landau gauge functional

FU [g] = 1

4V

∑
x

4∑
μ=1

Tr gxUxμg†
x+μ̂

. (1)

Here U ≡ {Uxμ̂} denotes the gauge configuration and g ≡ {gx} one
of the many gauge transformation fields fixing U to Landau gauge.
To ensure these Gribov copies are all distinct, the gauge-fixing al-
gorithm always started from a random gauge transformation field.
Interestingly, for all these 80 × 210 gauge-fixing attempts only a
few Gribov copies were found twice.

For every single Gribov copy we determine the lowest three
(non-trivial) eigenvalues 0 < λ1 < λ2 < λ3 of the Faddeev–Popov
(FP) operator using PARPACK [38]. In what follows, we will use
λ1 to classify copies: The Gribov copy with lowest λ1 (consid-
ered for each configuration separately) is labeled lowest copy (�c),
while the copy with the highest λ1 we call highest copy (hc). The
first generated copy, irrespective of λ1, gets the label first copy (fc).
It represents an arbitrary (random) Gribov copy of a configuration.
To compare with former lattice studies on the problem of Gribov
copies we also reintroduce the label best copy (bc). It refers to that
copy with the best (largest) gauge functional value FU [g] for a par-
ticular gauge configuration.

On those four sets of Gribov copies we calculate the SU(2)
gluon and ghost propagators following standard recipes. That is,
the gluon propagator is calculated for every lattice momentum
using a fast Fourier transformation and the ghost propagator by
using the plane-wave method for selected momenta. To acceler-
ate the latter we use the preconditioned conjugate gradient algo-
rithm of [11]. As a by-product of this calculation we also obtain
the renormalization constant, Z̃1, of the ghost–ghost–gluon (gh–gl)
vertex in Landau gauge for zero incoming gluon momentum. For
more details on lattice Landau gauge and the calculation of the
propagators and Z̃1 the reader may refer to Refs. [11,39–41] and
references therein.

When quoting momenta in physical units we adopt the usual
definition apμ(kμ) = 2 sin(πkμ/Lμ) with kμ ∈ (−Lμ/2, Lμ/2] and
Lμ ≡ 56, assume for the string tension

√
σ = 440 MeV and use

σa2 = 0.145 for β = 2.3 from Ref. [42], where a denotes the lattice
spacing.

3. Distribution of λ1

Before comparing the propagator data for the different types
of Gribov copies, it is instructive to look at the distribution of
λ1 on all copies first. In Fig. 1 we show this eigenvalue distribu-
tion (in lattice units) for Ncp = 210 Gribov copies. There, the big
panel shows it separately for each of the 80 gauge configurations
and the small panel (on top) for all configurations together as a
histogram. One sees that for most of the copies λ1 takes values be-
tween 0.5 × 10−3 and 1.9 × 10−3, mostly between 1.5 × 10−3 and
1.7 × 10−3, but for some configurations there are also copies with
an exceptionally small value for λ1, a value (λ1 < 10−4) far below
the values found for the other copies. With our simple (brute-
force) approach we are rather limited in finding more of these
exceptional copies. The gauge-fixing and calculation of eigenvalues
on a 564 lattice is computational quite demanding, and a more
sophisticated gauge-fixing algorithm — one which would automat-
ically select that Gribov copy with the smallest (or at least with
small) λ1 — does not exist. But it would be interesting to know
if for each configuration a Gribov copy with such an exceptionally
small λ1 exists.

For a few configurations we generated more than 210 Gribov
copies. These allow us now to have a closer look at the distribution
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