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We study simple two-dimensional models with massless and massive fermions in the Hamiltonian
framework. While our ultimate goal is to gain a deeper insight to structural differences between the
usual (“spacelike” – SL) and light-front (LF) forms of the relativistic dynamics, an attempt is also made to
clarify a few conceptual problems of quantum field theory. We point out that contrary to the assumption
of canonical quantization, interacting Heisenberg fields do not always reduce to free fields at t = 0. We
also show that by incorporating operator solutions of the field equations to the canonical formalism,
SL and LF Hamiltonians of the derivative-coupling model as well as of the Federbush model acquire an
equivalent structure. In the usual canonical treatment, physical predictions in the two schemes disagree
– the SL Hamiltonians contain interaction terms while their LF counterparts do not. Using a Bogoliubov
transformation, the physical vacuum of the Thirring model is then derived for the first time. It has a
form of a coherent state quadratic in composite boson operators which, after bosonization of the vector
current, are present in the (nondiagonal) interaction Hamiltonian. To find the vacuum of the Federbush
model by an analogous Bogoliubov transformation, we propose a massive version of Klaiber’s current
bosonization and demonstrate advantages of the LF treatment of the model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The usual “spacelike” (SL) and the light-front (LF) [1] forms of
relativistic quantum field theory (QFT) are two independent repre-
sentations of the same physical reality. There are however striking
differences between both schemes already at the level of basic
properties [2,3]. This concerns the mathematical structure as well
as some physical aspects (nature of field variables, division of the
Poincaré generators into the kinematical and dynamical sets, status
of the vacuum state, etc.) Exactly solvable models offer an opportu-
nity to study the structure of the two theoretical frameworks and
their relationship since in these models exact operator solutions
of field equations are known. From the solutions, the correlation
functions can be computed nonperturbatively and independently
of more sophisticated conformal QFT methods [4]. Note that not
all solvable models belong to the conformal class. Thus investiga-
tions of their properties in a Hamiltonian approach is a very useful
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alternative. It permits us to study directly the role of the vacuum
state and of the operator structures in both forms of QFT. Let us
recall in this connection that in the LF form of the relativistic dy-
namics, Fock vacuum is often the lowest-energy eigenstate of the
full Hamiltonian. This unique feature is not present in the SL theory
and the (unknown) true vacuum state is in practice often replaced
by the lowest-energy eigenstate of the free Hamiltonian (perturba-
tive vacuum) without a deeper justification.

In the present Letter, we give a brief survey of a study, based
on the above ideas, of the derivative-coupling model (DCM) [5],
the Thirring (TM) [6] and the Federbush model (FM) [7]. All these
models are quantum field theories in one space dimension. The
unifying idea is to benefit from the knowledge of operator so-
lutions of the field equations to re-express the corresponding SL
and LF Hamiltonians purely in terms of true degrees of freedom,
namely the free fields. This previously overlooked aspect not only
simplifies the overall physical picture but also removes structural
differences between SL and LF Hamiltonians. For example, in the
case of the simplest theory, the DC model, the conventional canon-
ical procedure applied to the SL and LF Lagrangians leads to a
striking result: the SL Hamiltonian contains an interaction term
while its LF analog does not. On the other hand, if we modify
this procedure as suggested above, the discrepancy disappears:
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the SL version of the DCM Hamiltonian is found to also have the
interaction-free form. Consequently, the physical SL vacuum of this
extremely simple model coincides with the Fock vacuum in a full
agreement with the LF result. However, for the models with more
complicated interaction structure, the Fock vacuum is an eigen-
state only of the free part of the SL Hamiltonians. This is because
the interaction parts of the SL Hamiltonians are generally nondiag-
onal when expressed in terms of creation and annihilation opera-
tors. To find the true vacuum state, they have to be diagonalized.
This is a complicated dynamical problem which however turns out
to be tractable analytically for the Thirring and Federbush mod-
els. Our idea is to bring their Hamiltonians to a quadratic form
by bosonization of the vector current and to diagonalize them by
a Bogoliubov transformation, generating thereby the true ground
state as a transformed Fock vacuum (a coherent state). We will
show this explicitly for the Thirring model. As for the Federbush
model, the conventional procedure yields a vanishing interaction
Hamiltonian for the LF case and a nonvanishing one for the SL
case. Although this discrepancy is removed when the solutions
of the field equations are taken into account, leading to interac-
tion Hamiltonians of the same structure, the LF scheme maintains
clear computational advantages with its much simpler operator
structures and with the Fock vacuum being its physical vacuum
state. We will discuss the Federbush model only very briefly in the
present Letter leaving a more detailed treatment for a subsequent
publication [8].

On a more formal level, the knowledge of the explicit form of
the operator solutions in the studied models tells us that the in-
teracting Heisenberg field does not reduce to a free field at t = 0,
contrary to the assumption of canonical quantization. This may
have consequences for more complicated models. Finally, the solv-
ability of the (conformally-noninvariant) massive Federbush model
allows us to test the methods of conformal field theory where the
mass term is treated as a perturbation [4].

2. The derivative-coupling model

It is instructive to explain our main ideas within a very simple
theory – massive fermion and scalar fields interacting via a gradi-
ent coupling. Its classical Lagrangian and field equations are

L = Ψ

(
i

2
γ μ

↔
∂μ − m

)
Ψ + 1

2
(∂μφ)2 − μ2

2
φ2 − g∂μφ Jμ, (1)

iγ μ∂μΨ = mΨ + g∂μφγ μΨ, (2)

∂μ∂μφ + μ2φ = g∂μ Jμ. (3)

The original Schroer’s model [5] had μ = 0. Our convention for the
gamma matrices is γ 0 = σ 1, γ 1 = iσ 2, α1 = γ 5 = γ 0γ 1 and σ i

are the Pauli matrices. Jμ(x) is the vector current composed from
the interacting fermion fields, Jμ(x) = Ψ (x)γ μΨ (x). Classically,
the vector current is conserved, ∂μ Jμ = 0, and the scalar field
satisfies the free Klein–Gordon equation. This feature is not guar-
anteed to persist on the quantum level. Since Eq. (2) can be solved
exactly irrespectively of whether the scalar field φ(x) is free or in-
teracting, the most natural way of solving the coupled equations
(2) and (3) is to use this solution in the correctly defined (regu-
larized) quantum current that will be inserted to the right-hand
side of (3). More specifically, the (classical) solution of the Dirac
equation (2) is

Ψ (x) = e−igφ(x)ψ(x), iγ μ∂μψ(x) = mψ(x). (4)

In quantum theory, the Fock decomposition of the free massive
fermion field ψ(x) has the form

ψ(x) =
+∞∫

−∞
dp̃1 [

b
(

p1)u
(

p1)e−i p̂·x + d†(p1)v
(

p1)ei p̂·x]. (5)

It contains the spinors u†(p1) = (
√

p−,
√

p+ ), v†(p1) =
(−√

p−,
√

p+ ), where p± = E(p1) ± p1, E(p1) =
√

p2
1 + m2. In the

expansion (5), p̂ · x = E(p1)t − p1x1 and we have used the abbre-
viation dp̃1 ≡ dp1/

√
4π E(p1). The fermion and antifermion Fock

operators satisfy the anticommutation relations

{
b
(

p1),b†(q1)} = {
d
(

p1),d†(q1)} = δ
(

p1 − q1). (6)

Similarly, the free scalar field, quantized by [a(k1),a†(l1)] = δ(k1 −
l1), will be expanded as

φ(x) =
+∞∫

−∞
dk̃1 [

a
(
k1)e−ik̂·x + a†(k1)eik̂·x]

≡ φ(+)(x) + φ(−)(x). (7)

The quantum version of the above Lagrangian contains operators
whose products are singular if their space–time arguments coin-
cide. A convenient regularization is to separate these arguments
by a small amount ε (the “point-splitting”). In quantum theory,
the solution Ψ (x) (4) has to be regularized, too. A consistent way
to do that is to normal-order the exponential in this solution:

Ψ (x) = Z 1/2(ε)e−igφ(−)(x)e−igφ(+)(x)ψ(x), (8)

where Z(ε)exp{g2[φ(+)(x + ε/2), φ(−)(x − ε/2)]} =
exp{−ig2 D(+)(ε)} and D(+)(x − y) is the corresponding two-point
function. Applying the point-splitting regularization to the inter-
acting current, we find

Jμ(x) = s lim
ε→0

1

2

{
Z(ε)ψ

(
x + ε

2

)
eigφ(−)(x+ ε

2 )eigφ(+)(x+ ε
2 )

× γ μe−igφ(−)(x− ε
2 )e−igφ(+)(x− ε

2 )ψ

(
x − ε

2

)
+ H.c.

}

= :ψ(x)γ μψ(x): + g

2π
∂μφ(x). (9)

Here s lim designates the symmetric limit, H.c. means Hermite con-
jugate and we have used the free-field relation ψ(x+ε/2)γ μψ(x−
ε/2) = :ψ(x)γ μψ(x): − i

π
εμ

ε2 . Note that all singular terms have
been automatically canceled in (9) due to the manifestly hermi-
tian definition of the current, so that no vacuum subtractions are
needed. The constant Z(ε) got canceled by the factor Z−1(ε) com-
ing from normal ordering of the two exponentials sandwiching γ μ

in (9). The quantum current Jμ(x) is not conserved (it is “anoma-
lous”), ∂μ Jμ(x) = g

2π �φ(x). However, it is obvious that the only
effect of the anomaly is to renormalize the scalar field mass,

∂μ∂μφ + μ̃2φ = 0, μ̃2 = μ2

1 − g2

2π

. (10)

An analogous calculation of the quantum axial vector current
yields

Jμ5 (x) = :ψ(x)γ μγ 5ψ(x): − g

2π
εμν∂νφ(x), (11)

which is a conserved quantity (due to the conservation of its free
part and the presence of εμν = −ενμ).

The conjugate momenta Πφ = ∂0φ(x)− g J 0, ΠΨ = i
2 Ψ †, ΠΨ † =

− i
2 Ψ lead from the Lagrangian (1) to the Hamiltonian H = H0B +

H ′ . H0B corresponds to the free massive scalar field and
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