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Temperature of projectile like fragments in heavy ion collisions
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A model in which a projectile like fragment can be simply regarded as a remnant after removal of some
part of the projectile leads to an excited fragment. This excitation energy can be calculated with a Hamil-
tonian that gives correct nuclear matter binding, compressibility and density distribution in finite nuclei.
In heavy ion collisions the model produces a dependence of excitation energy on impact parameter which
appears to be correct but the magnitude of the excitation energy falls short. It is argued that dynamic
effects left out in the model will increase this magnitude. The model can be directly extended to include
dynamics but at the expense of increased computation. For many calculations for observables, a tempera-
ture is an easier tool to use rather than an excitation energy. Hence temperature dependences on impact
parameter in heavy ion collisions are displayed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent times we proposed a model [1–3] for projectile frag-
mentation whose predictions were compared with many experi-
mental data with good success. The model has three parts. To start
with we need an abrasion cross-section. This was calculated using
straight line trajectories for the projectile and the target leading
to a definite mass and shape to the projectile like fragment (PLF).
The PLF will have an excitation energy. It was conjectured that this
will depend upon the relative size of the PLF with respect to the
projectile, i.e., on (As/A0) where As is the size of the PLF and A0
is the size of the whole projectile. Since the size As of the PLF
depends upon the impact parameter of the collision, dependence
on (As/A0) means the excitation energy depends upon the im-
pact parameter [2,3]. In our original version this dependence was
neglected [1] but became an important feature in the improved
model [2]. Instead of excitation energy we use temperature T .
The hot PLF will disintegrate into different composites which can
be calculated using a canonical thermodynamic model (CTM) [4].
Evaporation from hot composites which result from CTM was im-
plemented [5].

In our model the temperature of the PLF was not calculated,
it was fitted from data. In this Letter we try to estimate T from
a more basic approach. We are not trying here to formulate a
complete model for projectile fragmentation. The earlier papers
[1–3] had that goal. There are models which calculate observables
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which can be directly compared with experiment. One example is
the heavy ion phase space exploration (HIPSE) [6] model. Another
model that has been used is the antisymmetrised molecular dy-
namics (AMD) model [7]. These are relevant to our earlier papers
rather than to the present work.

The concept of temperature has proved to be useful to under-
stand many features of projectile fragmentation. Temperature T in
the PLF has been studied a great deal in the past using a com-
bination of theory and experimental data. A very popular method
uses experimental populations of excited states (for example, the
“Albergo” formula [8]) to deduce a temperature. Many data sug-
gest that the temperature is of the order of 5 MeV. There is
also unmistakable evidence that the temperature falls off with in-
creasing impact parameter. It was shown in [2] that for beam
energies between 140 MeV/n and 1 GeV/n (the only cases that
were tried) a remarkably simple parametrisation T (b) = 7.5 MeV−
[As(b)/A0]4.5 MeV worked well for all the pair of ions. In this Let-
ter we are trying to see if such simple feature can be understood
in a transparent physical picture. Simple models for PLF excitations
have also been made in the past [9,10]. The relationship of that
work to ours will be discussed in the last part of this Letter.

If straight line geometry is used then it is obvious that the PLF
is created with a crooked shape. If the excitation energy in the PLF
is mostly due to its crooked shape at the time of separation, one
can estimate the excitation energy assuming a liquid drop model
with a volume term, a surface tension term and Coulomb contri-
bution. One is probably confined to assuming a constant density
which is not realistic.

The objective of this Letter is to estimate the temperature in
the PLF using a more microscopic approach. The lowest order
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approximation we make to estimate the temperature arises from
the crooked shape that results from straight line geometry for cuts.
The excitation energy originates from structure effects solely as in
a liquid drop model. But we are not using a liquid drop model nor
are we limited to constant density. Our method can be extended
to consider dynamic effects using a transport model, specifically
the BUU (Boltzmann–Uehling–Uhlenbeck) model. The techniques
we use, even for the lowest order estimates, are well-known in
BUU calculations.

We should hasten to add that the calculations reported in this
Letter are not transport model calculations. These are static cal-
culations. There is no time evolution. The beam energy does not
enter but for the validity of the model the beam should be suf-
ficiently energetic so that straight line trajectories are a valid ap-
proximation. There are transport model calculations which com-
pute excitation energy per nucleon for quasi-projectile and quasi-
target [11] at 52 MeV per nucleon and 72 MeV per nucleon. Our
model would not apply at such low energy. Our model here was
developed for cases like Sn on Sn at 600 MeV per nucleon, Xe on
Pb at 1 GeV per nucleon. The lowest energy we had in mind was
140 MeV per nucleon with Ni as the projectile.

We do calculation for Sn on Sn, Xe on Pb, Ni on Be and Ta as we
have used our model for these cases before [1–3] and experimental
results are known [12–14]. In heavy ion collisions we consider one
ground state nucleus hitting another ground state nucleus. We first
turn to the model of the ground state.

2. Model of the ground state

We use Thomas–Fermi (TF) solutions for ground states. Com-
plete details of our procedure for TF solutions plus the choice of
the interactions are given in Ref. [15]. For completeness the pre-
scription is outlined. The kinetic energy density is given by

T (�r) =
∫

d3 p f (�r, �p)p2/2m (1)

where f (�r, �p) is the phase space density. Since we are looking for
lowest energy we take, at each �r, f (�r, �p) to be non-zero from 0 to
some maximum pF (�r). Thus we will have

f (r, p) = 4

h3
θ
[

pF (r, p) − p
]

(2)

The factor 4 is due to spin–isospin degeneracy and using the
spherical symmetry of the TF solution we have dropped the vector
sign on r and p. This leads to

T = 3h2

10m

[
3

16π

]2/3 ∫
ρ(r)5/3 d3r (3)

For potential energy we take

V = A

∫
d3r

ρ2(r)

2
+ 1

σ + 1
B

∫
ρσ+1(r)d3r

+ 1

2

∫
d3r d3r′ v

(�r,�r′)ρ(�r)ρ(�r′) (4)

The first two terms on the right hand side of the above equa-
tion are zero range Skyrme interactions. The third which is a finite
range term is often suppressed and the constants A, B, σ are cho-
sen to fit nuclear matter equilibrium density, binding energy per
nucleon and compressibility. In heavy ion collisions, for most pur-
poses, this will be adequate but for what we seek here, possibly a
small excitation energy, this is wholly inadequate. Thomas–Fermi
solution is obtained by minimising T + V . With only zero range
force, ρ(r) can be taken to be a constant which goes abruptly to
zero at some r0 fixed by the total number of nucleons. Now if ρ is

chosen to minimise the energy then, a nucleus, at this density with
a cubic shape is as good as a spherical nucleus. Besides the mini-
mum energy nucleus will have a sharp edge, not a realistic density
distribution. This problem does not arise in quantum mechanical
treatment with Skyrme interaction. Including a finite range poten-
tial in TF one recovers a more realistic density distribution for the
ground state and one regains the nuclear structure effects which
will contribute to excitation the PLF. This is discussed in more de-
tail in Ref. [15].

We note in passing that Lenk and Pandharipande introduced a
diffuse surface by modifying the kinetic energy term [19].

Thomas–Fermi solutions for relevant nuclei were constructed
with following force parameters. The constants A, B , and σ (Eq. (4))
were taken to be A = −1533.6 MeV fm3, B =
2805.3 MeV fm7/2, σ = 7/6. For the finite range potential we chose
a Yukawa: V y .

V y = V 0
e−|�r−�r′|/a

|�r − �r′|/a
(5)

with V 0 = −668.65 MeV and a = 0.45979 fm. Binding energies
and density profiles for many finite nuclei with these parameters
(and several others) are given in Ref. [15]. These have been used
in the past to construct TF solutions which collide in heavy ion
collisions [16].

3. Methodology

We use the method of test particles to evaluate excitation ener-
gies of a PLF with any given shape. The method of test particles is
well-known from use of BUU models for heavy ion collisions [17].
Earlier applications were made by Wong [18].

We first construct a TF solution using iterative techniques [15].
The TF phase space distribution will then be modeled by choos-
ing test particles with appropriate positions and momenta using
Monte Carlo. Throughout this work we consider 100 test particles
(Ntest = 100) for each nucleon. For example, the phase space dis-
tribution of 58Ni is described by 5800 test particles. A PLF can be
constructed by removing a set of test particles. Which test parti-
cles will be removed depends upon collision geometry envisaged.
For example, consider central collision of 58Ni on 9Be. Let z to be
the beam direction. For impact parameter b = 0 we remove all test
particles in 58Ni whose distance from the center of mass of 58Ni
has x2 + y2 < r2

9 where r9 = 2.38 fm is the radius at half density
of 9Be. The cases of non-zero impact parameter can be similarly
considered.

The “sudden approximation” we consider is the following. We
assume that the PLF is formed suddenly. At the time the PLF sepa-
rates from the participants the shape and momentum distribution
of the PLF can be described by removing some test particles as de-
scribed above. Of course this PLF will undergo many more changes
later but all we are concerned with is the energy of the system at
the time of “separation”. Since the PLF now is an isolated system,
the energy will be conserved. Of course the Coulomb force from
the participants will continue to be felt by the PLF. But the major
effect of this will be on overall translation of the PLF and all we
are interested in is intrinsic energy.

We now describe how we calculate the energy of this “crooked”
shape object. The mass number of the PLF is the sum of the num-
ber of test particles remaining divided by Ntest . Similarly the total
kinetic energy of the PLF is the sum of kinetic energies of the
teat particles divided by Ntest . Evaluating potential energy requires
much more work. We need a smooth density to be generated
by positions of test particles. We use the method of Lenk and
Pandharipande to obtain this smooth density. Other methods are
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