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We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topolog-
ically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy
groups for coset of the color group SU(N) (N = 2,3) under the action of maximal Abelian stability
group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Ex-
act analytic non-static knot solution in a simple CP1 model in Euclidean space–time has been obtained.
We construct an ansatz based on knot and monopole topological vacuum structure for searching new
solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–
time can be naturally obtained from knot solitons in integrable CP1 models. A family of Skyrme type low
energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is
proposed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Topological structure of classical solutions in SU(N) Yang–Mills
theory implies numerous physical manifestations in such impor-
tant phenomena in quantum chromodynamics (QCD) as the chi-
ral symmetry breaking and confinement [1]. The most attractive
mechanism of the confinement is based on the Meissner effect in
dual color superconductor [2–4] where monopole vacuum conden-
sate is generated dynamically due to quantum corrections [5–7].
Dyons represent alternative topological defects which may play an
important role as well as monopoles in description of the con-
finement at zero and finite temperature [8]. Whereas the instan-
ton and monopole solutions correspond to non-trivial topological
Chern–Simons and monopole charges, the topological knot con-
figurations with a non-zero Hopf charge represent another topo-
logical objects which become essential in various applications in
standard QCD and effective Skyrme type theories of QCD in low
energy region [9,10]. It has been found that knot solitons could
be good candidates for description of glueball states which can be
treated as excitations over the condensed vacuum [11,12].

The rich topological structure of QCD as a gauge theory is
conditioned by the presence of non-trivial homotopy groups
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πk(SU(N)/H), where the stability subgroup H determines possible
coset spaces with different topological properties. The homotopy
group π3(SU(N)) = Z describes topological classes of instanton
field configurations corresponding to topological Pontryagin in-
dex [13–15]. It is well known that instantons realize tunneling
between topologically non-equivalent vacuums and provide dom-
inant contribution to chiral symmetry breaking. Another example
of manifestation of non-trivial topology in QCD is provided by the
second homotopy group π2(SU(3)/U (1)×U (1)) = Z × Z which im-
plies Weyl symmetric structure of vacuum and singular monopole
solutions in SU(3) QCD [16–19].

A nice feature of quantum chromodynamics is that gauge con-
nection (potential) allows natural implementation of the color vec-
tor n̂ in adjoint representation of SU(N) within the formalism
of gauge invariant Abelian decomposition suggested first in [17,
20–22] and developed further in [23–25]. The color vector n̂ corre-
sponds to generators of the Cartan subalgebra of Lie algebra su(N)

and gives a suitable tool for description of whole topological struc-
ture of the gauge theory. A crucial observation has been made that
the classical vacuum in QCD can be explicitly constructed in terms
of the color vector n̂ [26,27]. This immediately implies that classi-
cal vacuum is strongly degenerated and all topologically non-equivalent
vacuums are classified by non-trivial homotopy groups π2,3(SU(N)/H).
In particular, in the case of SU(3) QCD it has been shown that
classical vacuum possesses a non-trivial Weyl symmetric structure
described by the second homotopy group π2(SU(3)/U (1) × U (1))

[19]. It should be stressed, that the color vector n̂ represents pure
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topological degrees of freedom, so that we have still a standard
QCD. In low energy region, in effective QCD theories like a general-
ized Faddeev–Skyrme model [11], the vector n̂ becomes dynamical.
The knowledge of the classical vacuum structure allows to study
vacuum excitations in search of possible finite energy topological
solutions and make further steps towards understanding funda-
mental properties of QCD at quantum level.

In the present Letter we consider first the topological struc-
ture of the classical vacuum in SU(N) (N = 2,3) QCD and study
possible manifestations of topological properties related with the
homotopy groups π2,3(SU(3)/U (1) × U (1)) and π2,3(SU(2)/U (1)).
Starting with known exact knot solutions from the integrable sec-
tor of CP1 models [28,29] we will construct a vacuum with knot
topology and obtain new analytic classical solutions in CP1 model,
standard QCD (in Euclidean and Minkowski space–time) and ef-
fective Skyrme type theory. The Letter is organized as follows. In
Section 2 we describe the general topological structure of the clas-
sical vacuum in SU(2) and SU(3) QCD. In Section 3 we consider
a simple CP1 model which can be treated as a restricted QCD
with one field variable n̂. Exact non-static knot-like solution with
a finite Euclidean action has been found. Section 4 deals with an
ansatz for possible topological solutions based on classical vacuum
made of n̂ with general topology. In Section 5 we present ana-
lytic singular knot-like solutions in QCD in Minkowski space–time.
A family of generalized Skyrme type effective theories admitting
exact solutions with non-trivial Hopf numbers is proposed in Sec-
tion 6.

2. Topological structure of classical vacuum in QCD

2.1. Topology of SU(2) QCD vacuum

It has been shown that knot configurations providing mini-
mums of the energy functional in Faddeev–Skyrme model may
correspond to vacuums of QCD in maximal Abelian gauge [26].
Later it has been proved that topologically non-equivalent classi-
cal vacuums in pure QCD can be constructed explicitly in terms of
a color vector n̂a (a = 1,2,3) [27]. By this, the vacuum pure gauge
fields �Aμ with different Chern–Simons numbers are in one-to-one
correspondence with color fields n̂ of respective Hopf charges.

One should stress, that the color vector n̂ in CP1 models (as well
as in Faddeev–Skyrme theory) represents dynamic field variable
whereas in QCD the vector field n̂ contains only pure topological
degrees of freedom. The most appropriate way how to implement
the topological degrees of freedom of n̂ into the gauge potential
while keeping a standard QCD theory is provided by Cho–Duan–
Ge gauge invariant Abelian projection [17,20,21]

�Aμ = Aμn̂ + �Cμ + �Xμ ≡ Âμ + �Xμ, (1)

where Aμ and �Xμ are the Abelian and off-diagonal gauge po-
tentials, Âμ is a restricted part of the gauge potential, and �Cμ ≡
− 1

g n̂ × ∂μn̂ is a magnetic potential. For simplicity we put the cou-

pling constant g equal to one. The vector n̂ has a natural origin
in the mathematical structure of the gauge theory, it is defined on
the coset G/H where the stability group H is defined by Cartan
subalgebra generators of the Lie algebra g(G). Notice, that there is
another type of Abelian decomposition proposed in [23–25] which
treats the color vector n̂ as a part of the whole gauge potential.
So that, such a decomposition leads to a theory different from the
standard QCD already at classical level [30].

The magnetic field strength �Hμν constructed from the magnetic
gauge potential �Cμ defines the scalar magnetic field Hμν

�Hμν = ∂μ �Cν − ∂ν �Cμ + �Cμ × �Cν ≡ Hμνn̂. (2)

The magnetic field Hμν defines a closed differential 2-form H =
dxμ ∧ dxν Hμν which implies the existence of dual magnetic po-
tential C̃μ

Hμν = ∂μC̃ν − ∂ν C̃μ. (3)

An explicit construction of the classical vacuum of QCD in terms
of knot configurations of n̂ has been found first in [27]

�Avac
μ = −C̃μn̂ + �Cμ. (4)

This relation establishes connection between a pure gauge poten-
tial and color vector field n̂ and implies that the classical vacuum
configurations can be described by topologically non-equivalent
classes of the color field n̂. Namely, the topological classes of
n̂ are determined by two homotopy groups, π2(SU(2)/U (1)) and
π3(SU(2)/U (1)) = π3(S2). The first one describes monopole con-
figurations, whereas the second homotopy describes Hopf map-
ping n̂ : S3 → S2 (we assume that the space R3 is compacti-
fied to a three-dimensional sphere S3). So that, all topological
non-equivalent classical vacuums are classified by Hopf, Q H , and
monopole, gm , charges

Q H = 1

32π2

∫
d3xε i jk C̃i H jk,

gm =
∫
S2

�Hij · n̂ dσ i j . (5)

One can show that Hopf number equals to the Chern–Simons num-
ber for vacuum gauge field configurations Avac

μ constructed from n̂.
To study possible exact solutions in QCD and QCD effective the-

ories we will consider explicit expressions for the color vector n̂
with a given knot topology. In particular, we will use known exact
analytic knot solutions found in special integrable models. Let us
recall first an explicit construction of a simple knot configuration
of n̂ as a mapping S3 → S2 with unit Hopf charge. Surprisingly,
such a simple construction leads directly to exact knot solutions
found in CP1 integrable models. Using stereographic projection it
is convenient to parameterize the target space S2 by a complex
field u ∈ C1

n̂ = 1

1 + uu∗

( u + u∗
−i(u − u∗)

uu∗ − 1

)
. (6)

A three-dimensional sphere S3 is given by embedding into R4 as
follows

|z1|2 + |z2|2 = 1 (7)

where z1, z2 are complex coordinates on the complex plane C2.
The Hopf mapping with the Hopf charge Q H = 1 is determined by
the following equation

u = z1

z2
. (8)

Starting with a given color vector n̂ one can define the magnetic
field Hμν explicitly in terms of the complex field u

Hμν = εabcn̂a∂μn̂b∂νn̂c

= −2i

(1 + |u|2)2

(
∂μu∂νu∗ − ∂νu∂μu∗). (9)

The dual magnetic potential C̃μ , (3) is written through the complex
SU(2) doublet ζ = (z1, z2) as follows

C̃μ = −2iζ †∂μζ. (10)
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