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Spin-foam models are hoped to provide a dynamics for loop quantum gravity. These start from the
Plebanski formulation of gravity, in which gravity is obtained from a topological field theory, BF theory,
through constraints, which, however, select more than one gravitational sector, as well as an unphysical
degenerate sector. We show this is why terms beyond the needed Feynman-prescribed one appear in
the semiclassical limit of the EPRL spin-foam amplitude. By quantum mechanically isolating a single
gravitational sector, we modify this amplitude, yielding a spin-foam amplitude for loop quantum gravity
with the correct semiclassical limit.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Loop quantum gravity (LQG) [1–4] offers a compelling kine-
matical framework in which discreteness of geometry is derived
from a quantization of general relativity (GR) rather than pos-
tulated. The discreteness has enabled well-defined proposals for
the Hamiltonian constraint — defining the dynamics of the the-
ory — in which one sees how diffeomorphism invariance elimi-
nates normally problematic ultraviolet divergences. However, the
lack of manifest space–time covariance, inherent in any canonical
approach, is often suspected as a reason for the presence of ambi-
guities in the quantization of the Hamiltonian constraint. This has
motivated the spin-foam program [1,5–7], which aims to provide
a space–time covariant, path integral version of the dynamics of
LQG a la Feynman. The histories summed over in the path integral
arise from loop quantization methods, each representing a ‘quan-
tum space–time’, and referred to as a spin-foam.

At the heart of the path integral approach is the prescription
that the contribution to the transition amplitude by each history
should be the exponential of i times the action. The use of such
an expression has roots tracing back to Paul Dirac’s Principles of
Quantum Mechanics [8], and is central to the successful derivation
of the classical limit of the path integral. In spin-foams, the ‘quan-
tum space–times’ have a classical geometric interpretation only in
the semiclassical limit h̄ → 0. It is in this limit that one seeks a
spin-foam amplitude equal to the exponential of i times the clas-
sical action. We call this the ‘semiclassical limit’ of a spin-foam
amplitude, following [9]. As highlighted in these remarks, having
such a correct semiclassical limit is key in recovering the correct
classical limit of the theory in the standard way.
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The method used for constructing the individual amplitudes in
a spin-foam sum is to use the Plebanski formulation of gravity, or
variations thereof. In this formulation of gravity, one takes advan-
tage of the fact that GR can be formulated as a topological field
theory whose spin-foam quantization is well-understood — BF the-
ory [10] — supplemented by so-called simplicity constraints. Within
the last several years, a spin-foam model of quantum gravity was,
for the first time, introduced whose kinematics match those of LQG
and therefore realize the original goal of the spin-foam program:
to provide a path integral dynamics for LQG. This is known in the
literature as EPRL [11–14]; when the Barbero–Immirzi parameter
[15,16] γ , a certain quantization ambiguity, is less than 1, this
model is identical to the Freidel–Krasnov model [17]. Despite its
success, the EPRL amplitude still has difficulty in obtaining the cor-
rect semiclassical limit: (non-geometric) degenerate configurations
are not suppressed, and even if one restricts to non-degenerate
configurations, the semiclassical limit of the simplest component
of the amplitude, the vertex amplitude, has four terms instead of
the desired one term of the form exponential of i times the ac-
tion [18]. Both of these problems cause unphysical configurations
to dominate in the semiclassical limit, as we will show. (See also
additional arguments [19–22] on the importance of having only
the one exponential term, reviewed in the final discussion.) Fur-
thermore, we will show that both of these problems are directly
due to a deficiency in the way gravity is recovered from BF theory:
When one imposes the simplicity constraints, one isolates not just
a single gravitational sector, but multiple sectors, not all physical.
The other 4-d spin-foam models of gravity have similar problems
with a similar source [9,23,24].

In the present work, we show how, by formulating the restric-
tion to what we call the Einstein–Hilbert sector classically first,
quantizing it, and incorporating it into the EPRL vertex definition,
one can define a modified vertex for which the extra terms in
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the semiclassical limit are eliminated, degenerate configurations
are exponentially suppressed, and one achieves a vertex amplitude
with the correct semiclassical limit. This new modified vertex, which
we call the proper EPRL vertex, additionally continues to be com-
patible with loop quantum gravity, linear in the boundary state,
and SU(2) invariant. The key condition of linearity in the bound-
ary state ensures that the final transition amplitude defined by the
spin-foam model is linear in the initial state and anti-linear in the
final state.

To begin, we review the classical discrete framework, review
the EPRL vertex, point out its problems, and then derive the so-
lution, leading to the definition of the proper EPRL vertex. In the
final discussion, we note how the proper vertex may also solve
other problems in the literature, in addition to the above one orig-
inally motivating this work. This Letter provides a summary of the
work, with emphasis on motivation and broader consequences, de-
tailed proofs being left to the two longer articles [25,26].

2. A review of EPRL from a new perspective

The quantum histories used in spin-foam sums are usually
based on a triangulation of space–time into 4-simplices. The prob-
ability amplitude for a given spin-foam history breaks up into a
product of amplitudes associated to each component of the tri-
angulation [1,7]. The most important of these amplitudes is the
vertex amplitude, which provides the probability amplitude for data
associated to a single 4-simplex. In the following, as we are con-
cerned specifically with the vertex amplitude, for conceptual clar-
ity, we focus on a single 4-simplex σ . (Though the EPRL vertex
has been generalized to arbitrary cells [27], we restrict ourselves
to the simplicial case, as certain key elements will depend on
the combinatorics of this case. See final discussion.) Let triangles
and tetrahedra of σ be denoted respectively by f and t and dec-
orations thereof. Fix a transverse orientation of each f within
the boundary of σ . Furthermore, fix an affine structure, which
is equivalent to fixing a flat connection ∂a , on σ ; this is a pure
gauge choice [26]. The basic variables for the single 4-simplex σ
consist in 5 group elements (Gt ∈ Spin(4))t∈σ , and 20 algebra el-
ements (BIJ

t f ∈ so(4)) f ∈t∈σ , I, J = 0,1,2,3. These are subject to
constraints: (1.) ‘orientation’, Gt � B f t = −Gt′ � B f t′ , where � de-
notes adjoint action, (2.) ‘closure’,

∑
f ∈t B f t = 0, and (3.) ‘linear

simplicity’, (B f t)
i j = 0, i, j = 1,2,3. Each of these three constraints

either restrict the allowed histories in the spin-foam sum or are
imposed in the sense that violations are exponentially suppressed.
Constraints (1.) and (2.) imply [25,28] that there exists a unique
two-form BIJ

μν , constant with respect to ∂a , such that, for all t, f
with f ∈ t ,

Gt � BIJ
f t =

∫
f

BIJ. (1)

In this Letter, μ,ν, . . . denote tensor indices over σ as a manifold.
When the constraint (3.), linear simplicity, is additionally imposed,
BIJ

μν takes one of the three forms [25]

(II±) BIJ = ±1

2
εIJ

KLeK ∧ eL for some const. eI
μ,

(deg) εIJKL BIJ
μν BKL

ρσ = 0 (degenerate B), (2)

where εIJKL is the Levi-Civita array, and the names for these sec-
tors have been taken from [25,29]. In sectors (II+) and (II−),
eI
μ has the interpretation of a co-tetrad, determining the space–

time metric via gμν := ηIJeI
μe J

ν , where ηIJ := diag(−1,1,1,1). Note
that, despite the spatial indices i j appearing in the constraint (3.),

the eI
μ arising in this way has full SO(4) freedom intact: For all

H ∈ Spin(4), under Gt �→ HGt , we have eI
μ �→ H I

J e J
μ where H I

J is
the SO(4) matrix canonically associated to H (see, e.g., [18,26]).

If BIJ
μν is non-degenerate, it additionally defines a dynamically

determined orientation of σ , which we represent by its sign rela-
tive to the fixed orientation ε̊ of σ :

ω := sgn
(
ε̊μνρσ εIJKL BIJ

μν BKL
ρσ

)
.

For convenience, define ω = 0 when BIJ
μν is degenerate. Addition-

ally, let ν := ±1,0 according to whether BIJ
μν is in (II±) or (deg).

If ν �= 0, the BF Lagrangian is related to the Einstein–Hilbert La-
grangian by

LBF = ωνLEH.

When ων = +1, LBF = LEH and we say that BIJ
μν , and the data

(BIJ
f t , Gt) determining BIJ

μν , are in the Einstein–Hilbert sector.
What we have described until now are the discrete space–time

variables of the model. These determine the phase space variables
(G f , J IJ

f t) on the boundary via

G f := Gt′f t f
:= G−1

t′f
Gt f ∈ Spin(4),

J IJ
f t := 1

8πG

(
BIJ

f t + 1

2γ
εIJ

KL BIJ
f t

)
.

Here t f , t′
f are respectively the tetrahedron ‘above’ and ‘below’ f

within the boundary ∂σ of σ . The J IJ
f t are conjugate to the G f

in the sense that they generate left or right translations on G f
depending on whether t = t f or t = t′

f . The generators of (internal)

spatial rotations in terms of these are then Li
f t := 1

2 ε i
jk J jk

f t .
In quantum theory, the simplicity constraint reduces the bound-

ary Hilbert space of the quantum BF theory to that of LQG, yielding
an embedding of LQG boundary states into Spin(4) BF theory
boundary states [14]. Let us recall this embedding both because
it is at the heart of the EPRL vertex amplitude, and because it will
be key in the modification we propose.

The LQG Hilbert space associated to ∂σ is L2(× f SU(2)). A (gen-
eralized) spin-network Ψ(k f ,ψ f t ) in this space is labeled by one
spin k f and two states ψ f t′f ∈ V ∗

k f
, ψ f t f ∈ Vk f per triangle f ,

where Vk denotes the spin-k representation of SU(2). Ψ(k f ,ψ f t ) ∈
L2(× f SU(2)) is given explicitly by

Ψ(k f ,ψ f t )((g f )) :=
∏

f

〈ψ f t′f |ρ(g f )|ψ f t f 〉, (3)

where ρ(g) denotes the action of g ∈ SU(2). The embedding ι from
LQG states to Spin(4) BF theory boundary states is defined in terms
of the basis (3) by

(ιΨ(k f ,ψ f t ))((G f )) :=
∏

f

〈ψ f t′ f |ιk f ρ(G f )ιk f |ψ f t f 〉,

where here and throughout this Letter we set s± := 1
2 |1 ± γ |k,

ιk : Vk → V s− ⊗ V s+ denotes the intertwiner among the indicated
SU(2) representations, scaled such that it is isometric in the Hilbert
space inner products, ιk : V s− ⊗ V s+ → Vk denotes its Hermitian
conjugate, and ρ(G) denotes the action of G ∈ Spin(4) in the ap-
propriate representation. Note that in order to ensure that s±

f are
half integers, the values of k f must be restricted; the resulting
spectra of geometric operators then become continuous in the
semiclassical limit if and only if γ is rational, so that γ must be
rational in order for the theory to be viable [14,30]. (This is an
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