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a b s t r a c t

Strong and lightweight fibre reinforced polymeric composites now dominate the aerospace, marine and
low-volume automotive sectors. The surface finish on exterior composite panels is of critical importance
for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the
task of automatically classifying the surface finish of Carbon Fibre Reinforced Plastic (CFRP) samples into
two quality grades. Automatic classification was successful for all but four samples out of 14,400 classi-
fication trial configurations, representing 403,200 sample classification attempts (28 attempts per config-
uration). This work establishes the principle of WTA as a basis for automatic surface finish classification
of composite materials.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Strong and lightweight fibre reinforced polymeric composites
(for example, Glass-Fibre Reinforced Plastic (GRP), and Carbon Fibre
Reinforced Plastics (CFRPs)) now dominate the aerospace, marine
and low-volume automotive sectors. More recently, environmen-
tally-friendly fibre reinforced composites based on natural fibres
and bio-based resins are also finding favour. The mechanical prop-
erties of advanced composites are essential for their structural
performance, but the surface finish on exterior composite panels
is of critical importance for customer satisfaction [1]. Customers de-
mand a flawless (Class A) surface finish, but this can be difficult to
achieve on composite surfaces. Dry spots can occur in wet lay-up
processes, and the strong reinforcement fibres can ‘read through’
to the exterior surface, spoiling the cosmetic appearance [2]. While
it important that there is further research into materials and man-
ufacturing process to improve surface finish [3], it is essential that
composite manufacturers have reliable and repeatable methods
for evaluating surface texture. To date, assessment of surface finish
quality has tended to be based simply on human visual observation.
While this method has been found to deliver results that are accept-
able to customers, it is generally performed using several observers
in order to produce statistically meaningful results [4], and is there-
fore time-consuming and not directly adaptable to the automated
manufacture of composite products [5].

Systems for the objective assessment of surface quality do
exist – divided into two categories: contact measurement
(generally employing a stylus used to trace a profile of the surface

under examination) and non-contact measurement (generally
employing optical sensors to capture an image of the surface under
examination that is then processed by computer). Both types of
system are capable of accurate measurement of specific surface
parameters, but currently struggle to replicate the human visual
assessment of surface finish [5], and commercially available sys-
tems (for example, the BYK-Gardner Wave Scan DOI instrument
is used to assess surface finish [6]) are typically very expensive.
A non-contact computer vision system has been demonstrated in
a reinforced polymer composite manufacturing application to pro-
vide good results in evaluating standard surface roughness param-
eters [7].

It has been observed that many types of engineering surfaces
contain textural features at multiple scales [8], and may be fractal
(self-similar at different scales) in nature [9,10]. While there exist a
number a numerical methods for characterising engineering sur-
faces, many require that the distribution of surface features is sta-
tionary (i.e., the frequency content does not vary with location), an
assumption that is often not valid [8]. It has been shown that the
wavelet transform has the ability to effectively characterise surface
profile data that contain multi-scale features and are non-station-
ary [8], and are fractal in nature [9]. For the comprehensive charac-
terisation of surface features and texture, these inherent abilities of
the wavelet transform place ‘‘it way ahead of other traditional
methods’’ [11], and are why it is ‘‘generally considered to be state
of the art in texture analysis’’ [12].

Wavelet analysis has been applied to the characterisation of
material surface parameters. Data from 2D wavelet multiresolu-
tion analysis were used as the basis for a successful empirical para-
metric mapping between material surface images obtained via
computer vision acquisition and standard surface roughness
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parameters obtained using conventional stylus measurement [13].
In a study to enhance the surface roughness of polymeric filtration
membranes via plasma treatment, a wavelet-based characterisa-
tion of surface roughness data was used to establish the optimal
plasma treatment duration, and was found to provide a more com-
plete characterisation of surface roughness than standard mea-
sures [11]. For the objective assessment of surface features of
textiles, wavelet-based analysis of computer vision data was
shown to be able to distinguish surface imperfections from the
underlying fabric weave [14], and more generally to be able effec-
tively characterise fabric surface texture [15].

Wavelet analysis has also been applied to the analysis of surface
characteristics of reinforced polymer composites. The utility of
wavelet analysis of eddy current sensor data for the identification
of surface defects in CFRP composite materials has been demon-
strated [16]. Wavelet techniques have been used to analyse surface
data to characterise and understand the hydrophobic characteris-
tics of epoxy nanocomposite surfaces [17]. Wavelet analysis has
also been used more widely in the identification and characterisa-
tion of internal defects in reinforced polymer composites [18,19].

It has been observed that for resin transfer moulded composite
plates with surfaces that have approximately similar quality, hu-
man visual observation generally outperforms objective (mathe-
matical) methods in the differentiation of sample surface quality
– possibly because the standard surface roughness parameters
commonly used may not provide an unambiguous indicator of sur-
face quality that agrees with human visual assessment [5]. Direct
measurements of standard surface roughness parameters yields
only height information about the morphology of a surface and
not a total characterisation of a surface [11]. The desirability of
objective techniques for the characterisation of surface quality of
reinforced polymer composites that can provide the same results
as a human subjective evaluation is noted [5].

Physiological experiments have shown that the visual cortex
appears to perform a 2D multi-scale decomposition of the visual
field into a range of frequency bands/channels [20]. There is con-
siderable similarity between the wavelet transform and biological
visual systems. This similarity has resulted in its use in biologically
inspired computer vision systems [21]. The 2D wavelet transform
is a mathematically robust analysis tool for the characterisation
of material surface finish data in ways analogous to human visual
processes, and offers practical and rigorous methods for the objec-
tive classification of surface quality. This paper demonstrates the
application of wavelet texture analysis methods to the task of
automatically classifying the surface finish properties of CFRP sam-
ples into two quality grades. We seek to establish the feasibility of
this approach as the basis for automated non-contact classification
of composite surface finish using image analysis methods analo-
gous to the functioning of the human vision system.

2. Material and methods

To assess the feasibility of wavelet texture analysis for objective
assessment of composite surface finish, two CFRP sample panels
(150 mm � 150 mm) were created. The CFRP panels comprised
two layers of 200 g/m2 carbon fibre plain weave cloth (supplied
by ATL Composites – code ZP200) impregnated with epoxy resin
(R180 epoxy resin and epoxy hardener H180 standard – supplied
by Fibre Glass International, FGI). The carbon fibre cloth was placed
on a pre-released flat glass mould surface and resin and hardener
mix was introduced by hand using brushes. The panels were
backed with a plywood base for flexural stiffness and then vacuum
bagged. To create two different surface finishes (‘good’ and ‘bad’),
the carbon fibre cloth on the ‘bad’ panel was not fully wet-out.
Insufficient resin resulted in dry areas that were clearly evident

at the intersection/cross-over between the warp and weft of the
weave. A significantly better finish (less dry spots) could be ob-
served on the ‘good’ panel when compared to the ‘bad’ panel. Cur-
ing occurred under atmospheric conditions. We purposefully
elected to use an un-coated composite in the work presented here;
the combination of the visible textile weave construction and the
surface finish properties presents a more challenging image analy-
sis/classification task for the proposed WTA method than a coated
surface, which removes/hides the potentially confounding visual
element of the weave structure.

The two sample panels were scanned at 600 pixels per inch
(approximately 236 pixels per cm) using a Hewlett–Packard
HP3200C flatbed scanner to yield high resolution 8 bit (256 grey
scale) images. These high resolution scans where then separated
into 16 sections each with some overlap, yielding 32 sample
images – 16 each of good and bad. All numerical analyses de-
scribed hereafter was performed using the Matlab computing envi-
ronment [22]. The wavelet analysis method is expedited by images
that have linear dimensions of an integer power of two. To this end,
all 32 sample images were sized to be 1024 by 1024 pixels for test-
ing. Figs. 1 and 2 show typical ‘good’ and ‘bad’ sample test images
produced in this manner.

Fig. 3 shows a typical horizontal data cross section from a ‘good’
sample. Higher data values represent lighter (whiter) elements in
the sample image. The fibre plain weave ‘under and over’ warp
and weft structure is readily apparent. Fig. 4 shows a typical hori-
zontal data cross section from a ‘bad’ sample. The same basic
weave structure is apparent in the data, but overlaid on this, at
points in the horizontal cross section, are extreme (both high and
low) pixel values caused by the dry spots on the bad panels.

Detailed mathematical treatments of the wavelet transform are
available elsewhere [23], but, in principle [24], the one-dimen-
sional continuous wavelet transform (1DCWT) involves the com-
parison of a small waveform (wavelet – a time-limited waveform
with particular mathematical properties) with a section of the data
under test. The process produces a coefficient that represents the
‘match’ between the data and the wavelet. The wavelet is trans-
lated by a small distance, and the comparison is repeated, in this
way, the 1DCWT provides characteristic information about the
data that is localised in position. Then, the wavelet is dilated
(scaled up) and the process is repeated over a range of scales. Each

Fig. 1. A typical ‘good’ sample.
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