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Different approaches to quantum gravity conclude that black holes may possess an inner horizon, in
addition to the (quantum corrected) outer ‘Schwarzschild’ horizon. In this Letter we assume the existence
of this inner horizon and explain the physical process that might lead to the tunneling of particles
through it. It is shown that the tunneling would produce a flux of particles with a spectrum that deviates
from the pure thermal one. Under the appropriate approximation the extremely high temperature of this
horizon is calculated for an improved quantum black hole. It is argued that the flux of particles tunneled
through the horizons affects the dynamics of the black hole interior leading to an endogenous instability.
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1. Introduction

The discovery that black holes emit radiation had a big impact
on the scientific community. The celebrated pioneering work on
this subject was performed by Hawking in 1975 [1] who showed,
based on results of quantum field theory on a fixed curved back-
ground (Schwarzschild’s solution), that black holes emit a thermal
spectrum of particles from their event horizon. The heuristic pic-
ture most commonly proposed as an explanation of this effect is
that of pair creation near the horizon of the black hole and the cor-
responding tunneling of particles in which one of the components
of the pair is swallowed by the black hole and the other escapes.
This picture led Parikh and Wilczek [2] to propose a method for
studying Hawking radiation from the Schwarzschild horizon by
explicitly considering the tunneling of particles through it. Fur-
thermore, their method took into account the back-reaction effect
of the radiation on the black hole thanks to the requirement of
energy conservation and showed that new terms appear in the
distribution function which deviate it from pure thermal emission,
i.e., the standard Boltzmann distribution.

Of course, this picture is incomplete since, in order to describe
the last stages of black hole evaporation, one should take into
account quantum gravity effects. The possibility of studying the ra-
diation from the outer horizon of quantum corrected black holes is
now feasible from different approaches to Quantum Gravity [3–6].
Sometimes a strict thermal evolution has been imposed on the
quantum black hole by estimating Hawking’s energy flux directly
from Stefan–Boltzmann’s law. However, it is also possible to study
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more accurately the radiation from quantum black holes by follow-
ing the approach of Parikh and Wilczek. For example, in [7] the
tunneling of particles through the outer horizon has been studied
by using an effective quantum spacetime [3] based on the Quan-
tum Einstein Gravity approach.

On the other hand, the possibility that black holes could have
an inner horizon seems nowadays plausible since the results from
different frameworks [3–6] point in this direction. However, while
there exists a vast amount of work devoted to the properties of
the outer horizon, the properties of this inner horizon remain, in
comparison, relatively unknown. It seems, therefore, natural at this
moment to speculate about the properties of this horizon and its
consequences on the inner dynamics of the black hole. This is the
aim of this Letter in which the possibility of tunneling from the
inner horizon is studied (specifically for the solution found in [3])
and the physical process behind it is explained. Moreover, guided
by the well-known existence of classical solutions possessing an
inner horizon instability under the perturbation of external fields
(from which, the Reissner–Nordström solution is the paramount
example), the stability of the inner horizon of a quantum corrected
solution is checked. In particular, we are interested not only in the
influence of external fields, but in whether the flux of energy tun-
neled through the black hole horizons could have consequences on
its own stability.

The Letter has been divided as follows. Section 2 introduces the
solution for the quantum black hole (the improved Schwarzschild
spacetime) and its main properties. In Section 3 the stability of
the solution is checked under the action of a test distribution
of noninteracting massless particles. Section 4 analyzes the tun-
neling of particles through the inner horizon of the improved
black hole. This allows us, in Section 5, to evaluate the spectral
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distribution and temperature of the emitted particles. The flow
of energy through the inner horizon is found in Section 6 and a
model for the evolution of an evaporating quantum black hole is
then treated in Section 7. The stability of the evaporating model
under the flow of energy from its horizons is analyzed in Section 8.
Finally, the results are discussed in Section 9.

2. Improved Schwarzschild solution

In [3] Bonanno and Reuter found an effective spacetime for a
quantum black hole by using the idea of the Wilsonian renor-
malization group [8] in order to study quantum effects in the
Schwarzschild spacetime. Specifically, they obtained a renormaliza-
tion group improvement of the Schwarzschild metric based upon
a scale dependent Newton constant G obtained from the exact
renormalization group equation for gravity [9] describing the scale
dependence of the effective average action [10,11]. The solution
can be written as

ds2 = − f (R)dt2
S + f (R)−1 dR2 + R2 dΩ2. (2.1)

where

f (R) = 1 − 2G(R)M

R
(2.2)

with

G(R) = G0 R3

R3 + ω̃G0(R + γ G0M)
(2.3)

and where G0 is Newton’s universal gravitational constant, M is
the mass measured by an observer at infinity and ω̃ and γ are
constants coming from the non-perturbative renormalization group
theory and from an appropriate cutoff identification, respectively.
In [3,12] it is argued that the preferred value for γ is γ = 9/2.
On the other hand, ω̃ can be found by comparison with the stan-
dard perturbative quantization of Einstein’s gravity (see [13] and
references therein). It can be deduced that its precise value is
ω̃ = 167/(30π), but the properties of the solution do not rely on
its precise value as long as it is strictly positive.

The horizons in this solution can be found by solving f (R) = 0.
The number of positive real solutions to this equation correspond
to the positive real solutions of a cubic equation and depends on
the sign of its discriminant or, equivalently, on whether the mass
is bigger, equal or smaller than a critical value Mcr . In general, the
critical value takes the form

Mcr = a(γ )

√
ω̃

G0
= a(γ )

√
ω̃mp ∼ √

ω̃mp, (2.4)

where mp is Planck’s mass and the function a(γ ) has, in general,
an involved expression that, for reasonable values of γ satisfies
a(γ ) ∼ 1. In particular, the preferred value γ = 9/2 provide us
with

Mcr = 1

24

√
1

2
(2819 + 85

√
1105 )

√
ω̃

G0
� 2.21

√
ω̃mp � 2.94mp.

If M < Mcr the equation has not positive real solutions, so
that there are not horizons. If M = Mcr there is only one posi-
tive real solution to the cubic equation. Finally, if M > Mcr then
the equation has two positive real solutions {R−, R+} satisfying
R− < R+ . The outer solution R+ can be considered as the improved
Schwarzschild horizon, i.e., the Schwarzschild horizon when quan-
tum modifications are taken into account. On the other hand, the
inner solution R− represents a novelty with regard to the classical
solution. It is a monotonically decreasing function of M defined for

Fig. 1. R−(M) is plotted in Planck units for masses around the critical mass. A cal-
culation shows that R−(M = Mcr) � 3.772 while R−(M → ∞) � 1.997.

Fig. 2. A Penrose diagram corresponding to the case M > Mcr . The region drawn
using a solid black line (I–II–III) correspond to the zone defined by the solution
in Eddington–Finkelstein-like coordinates (3.1) with the null coordinate going from
u = −∞ to u = ∞. The regions drawn in grey correspond to extensions of this solu-
tion. Penrose’s classical instability argument [14] is schematically shown: An eternal
observer ‘O’ emits radiation (dashed lines) at equal intervals from the asymptotically
flat region I towards R = 0. As it approaches its timelike infinite i+ the radiation
piles up at the inner horizon R− (u = ∞), which is an instable surface of infinite
blueshift.

masses non-smaller than the critical mass (see Fig. 1) that from its
maximum value R+(Mcr) (� 3.772

√
G0 ) tends asymptotically to-

wards the value R−min = √
G0γ ω̃/2.

The maximally extended spacetime for this solution in the case
M > Mcr resembles the Reissner–Nordström maximally extended
spacetime in the case M > |Q |. A Penrose diagram of the improved
black hole for this case has been depicted in Fig. 2. Note that the
usual R = 0 singularity in the classical Schwarzschild solution does
not exist in the improved solution [3,15]. It is also important to
remark for later purposes that, from a classical point of view and
as can be directly checked from Fig. 2, a photon in region II that
follows the ingoing direction towards region III must reach R = 0.

In order to interpret the physical meaning of this solution let
us suppose that it has been generated by an effective matter fluid
in such a way that the coupled gravity-matter system satisfies



Download English Version:

https://daneshyari.com/en/article/8188395

Download Persian Version:

https://daneshyari.com/article/8188395

Daneshyari.com

https://daneshyari.com/en/article/8188395
https://daneshyari.com/article/8188395
https://daneshyari.com

