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There are two known approaches for quantizing the SU(2) Skyrme model, the semiclassical and canonical
quantization. The semiclassical approach does not take into account the non-commutativity of velocity
of quantum coordinates and the stability of the semiclassical soliton is conveniently ensured by the
symmetry breaking term. The canonical quantum approach leads to quantum mass correction that is
not obtained in the semiclassical approach. In this Letter we argue that these two approaches are not
equivalent and lead to different results. We show that the resulting profile functions have the same
asymptotic behaviour, however their shape in the region close to the origin is different.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Skyrme topological soliton model is a nonlinear field the-
ory, with localized finite energy soliton solutions [1,2]. The first
comprehensive phenomenological application of the model to
baryons was the semiclassical calculation of the static properties
of the nucleon [3]. The low-energy QCD in the large color limit
[4] is argued to describe baryons as solitons in the weakly cou-
pled phase of mesons which was the original idea of [1] and [3].
The original model was defined for a unitary field U (x, t) that
belongs to the fundamental representation of SU(2). The bound-
ary constraint U → 1 as |x| → ∞ implies that the unitary field
represents a mapping from S3 → S3. The integer valued winding
number which classifies the solitonic sectors of the model was in-
terpreted to be the baryon number. The semiclassical quantization
of model has proven to be useful for baryon phenomenology. How-
ever the semiclassically-treated SU(2) model was shown to have an
instability in calculating the energy functional [5,6]. The stability
and correct asymptotic behaviour of solutions can be achieved by
introducing an additional symmetry breaking term. The alterna-
tive stabilization of the quantum SU(2) Skyrme model has been
obtained by quantizing the soliton quantum canonically in collec-
tive coordinate approach [7,8]. The non-commutativity of canonical
momenta in a Hamiltonian system leads to non-commutativity
of velocities of the canonical coordinates (collective coordinates)
which cannot be ignored. It was shown that the procedure of the
canonical quantization contributes to the appearance of new terms
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egidijus.norvaisas@tfai.vu.lt (E. Norvaišas).

in the explicit form of the Lagrangian of the model. These terms
are interpreted as quantum corrections to the mass of the soli-
ton (‘quantum mass corrections’) that restore the stability of the
solitons that is lost in the semiclassical approach [8]. The purpose
of the present Letter is to show that the quantum mass correc-
tions of the soliton are important in ensuring the stability of the
quantum solitons and realize Skyrme’s original conjecture that ‘the
mass (of the meson mπ ) may arise as a self-consistent quantal ef-
fect. This point will not be followed here, but when, for calculation
purposes, we want to allow phenomenologically for a finite mass
this will be done by adding to L a term (proportional to m2

π )’ [2].
We find stable quantum solitons by varying the complete quan-
tum energy functional for nucleon. The stability is ensured by the
consequence of iterative calculations. The shapes of quantum soli-
tons with different stabilizing terms are demonstrated in Fig. 2.
We do not consider quantum soliton with quantum numbers of
� resonances because there are no known stable solutions for the
quantum SU(2) Skyrme model defined in fundamental representa-
tion. The stable quantum solutions for � exist in the generalized
SU(2) Skyrme model which is defined for higher representations
[8] or in the SU(3) Skyrme model [9]. After some preliminary defi-
nitions in Section 2 below, the main part of this Letter is organized
as follows. In Section 3 the quantum Skyrme model is constructed
ab initio in the collective coordinates framework and canonicaly
quantized. The structure of energy functional is derived. Section 4
contains numerical results and summarizing discussion.

2. Classical Skyrmion

The SU(2) Skyrme model is conveniently defined via the chirally
symmetric Lagrangian density
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LSk = − f 2
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{[Rμ,Rν ][Rμ,Rν
]}

, (1)

which is written in terms of the su(2)-valued right chiral current
Rμ = (∂μU )U †. Here fπ and e are model parameters, whose values
are constrained by fitting with the experimental data. The chiral
symmetry breaking term of Lagrangian density is defined by

LSB = −MSB = − f 2
π

4
m2

0 Tr
{

U + U † − 2 · 1}
, (2)

where m0 is the third model parameter.
The classical static soliton (Skyrmion) is obtained by employing

the spherically symmetric hedgehog ansatz

U0
(
x̂, F (r)

) = exp i(σ · x̂)F (r), (3)

where σ are Pauli matrices and x̂ is the unit vector. With this
ansatz the classical Lagrangian density reduces to the following
simple form

Lcl
(

F (r)
) = −MSk
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) −MSB
(
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)

= − f 2
π

2
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− 1

2e2

sin2 F

r2

(
2F ′ 2 + sin2 F

r2

)

− f 2
πm2

0(1 − cos F ), (4)

which defines the energy of the Skyrmion,

E0 = −4π

∫
Lcl

(
F (r)

)
r2 dr.

Variation of (4) leads to a differential equation for the profile func-
tion F (r). The standard boundary conditions for a Skyrmion are
F (0) = π , F (∞) = 0.

3. Quantization of the Skyrmion

The standard (semiclassical) approach to quantize the rotational
zero modes of the Skyrmion yielding multiplets with equal spin
and isospin in each multiplet was presented in [3,4]. This ap-
proach treats the soliton as a rigid body and does not take into
account the non-commutativity of quantum coordinates and ve-
locities. The canonical quantization treats the quantum variables
canonically and leads to new quantum terms in the explicit of the
Lagrangian that are interpreted as dynamically generated quantum
mass correction. This approach was presented in [7] and further
developed in [8]. The details are as follows.

The quantum field U can be written in a form with temporal
and spatial parts separated explicitly

U
(
x̂, F (r),q(t)

) = A
(
q(t)

)
U0

(
x̂, F (r)

)
A†(q(t)

)
, (5)

where U0 is the classical field and A(q(t)) is a matrix specified
by three real independent parameters, generalized quantum coor-
dinates qk(t). The Lagrangian (1) is considered quantum mechan-
ically ab initio. Thus the canonical commutation relation [pk,ql] =
−iδkl for generalized coordinates ql and conjugate momenta pk is
required to hold. In such a way the generalized coordinates qk(t)
and velocities are ought to satisfy the commutation relations
[
q̇k,ql] = −i f kl(q), (6)

where the form of the tensor f kl(q) will be determined below. The
temporal derivatives are calculated by employing the usual Weyl
ordering, and the operator ordering is fixed by the form of the La-
grangian (1) without further ordering ambiguity. For the derivation

of the canonical momenta it is sufficient to restrict the considera-
tion to the terms of second order in velocities (the terms of first
order vanish). This leads to

LSk ≈ 1

2
q̇α gαβ(q, F )q̇β + [

(q̇)0 − order term
]
, (7)

where the metric tensor takes the form

gαβ(q, F ) = −C ′ (M)
α (q)(−1)Ma(F )δM,−M ′ C ′ (M ′)

β (q). (8)

Here C ′ (M)
α (q) are functions of quantum coordinates q. Their ex-

plicit form depends on the chosen parametrization of the SU(2)
group. However the explicit form does not appear anywhere in the
calculations. For details on these functions we refer to [8].

The canonical commutation relations [pβ,qα] = −iδαβ then
yield the explicit expression for the functions f αβ(q) = g−1

αβ (q, F ).
Next, by substituting (5) into the Lagrangian density (1) and after
some lengthy manipulation and integration over the space vari-
ables the complete expression of the quantum Skyrme model La-
grangian are obtained

L = −Mcl − �M + 1

2a(F )
Ĵ ′ 2, (9)

where �M is the (negative) quantum mass correction

�M = − 2π

a2(F )

∫
r2 dr sin2 F

[
f 2
π + 1

2e2

(
2F ′ 2 + sin2 F

r2

)]
,

(10)

and Ĵ ′
(M) are the angular momentum operators

Ĵ ′
(M) = i

2

{
pα, C ′ α

(M)(q)
}

(11)

satisfying the standard SU(2) commutation rules, and C ′ α
(M)(q) is

the reciprocal matrix to C ′ (M)
α (q). The generalized method of quan-

tization on a curved space developed by Sugano et al. [10] allows
to write the energy functional of the quantum Skyrmion for a state
with fixed spin and isospin 
 in this form

E(
, F ) = Mcl(F ) + �M(F ) + 
(
 + 1)

2a(F )
, (12)

where a(F ) is the quantum momentum of inertia of the Skyrmion

a(F ) = 1

e3 fπ
ã(F )

= 1

e3 fπ

8π

3

∫
dr̃ r̃2 sin2 F

(
1 + F ′ 2 + 1

r̃2
sin2 F

)
. (13)

Notice that it differs from the mechanical moment of inertia of
the classical Skyrmion. The expression (12) is the quantum version
of the mass formula of the Skyrme model, which differs from the
semiclassical one by the appearance of the additional (negative)
quantum correction �M(F ). The variation of the energy functional
δE(F )

δF = 0 of the quantum Skyrmion for states with given 
 leads to
an integro-differential equation for the profile function F (r) with
the same boundary conditions as in the classical case, F (0) = π ,
F (∞) = 0. At large distances the asymptotic solution takes the
form

F (r̃) = k

(
m̃2

r̃
+ 1

r̃2

)
exp(−m̃r̃), (14)

where the quantity m̃2 is defined by
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