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Within the collinear twist-3 framework, we study the single-spin asymmetry (SSA) in collisions between
unpolarized protons and transversely polarized protons with focus on the fragmentation term. The
fragmentation mechanism must be analyzed in detail in order to unambiguously determine the impact
of various contributions to SSAs in hadron production. Such a distinction may also settle the “sign
mismatch” between the transverse SSA in proton–proton collisions and the Sivers effect in semi-inclusive
deep inelastic scattering. We calculate terms involving quark–quark and quark–gluon–quark correlators,
which is an important step in such an investigation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Beginning in the late 1970s, calculations of transverse SSAs
in inclusive hadron production within the naïve collinear parton
model demonstrated that such asymmetries should be on the or-
der of αsmq/Ph⊥ , where mq is the mass of the quark, and Ph⊥
is the transverse momentum of the detected hadron [1,2]. These
predictions contradict the large SSAs seen in experiments [3–9].
However, the use of collinear twist-3 multi-parton correlators es-
tablished a framework, valid when ΛQ C D � Ph⊥ , that could po-
tentially handle these observables [10–13]. Various processes have
been analyzed over the last two decades using this methodol-
ogy — see [12–25] for some specific examples. (We also mention
that other mechanisms have been proposed to explain large SSAs
[26–29].) Furthermore, the collinear twist-3 formalism has been
used to describe the double-spin observable ALT in different reac-
tions with one large scale [30–37].

In particular, much attention has been given to the transverse
target SSA for inclusive single hadron production in proton–proton
collisions. This observable was initially believed to be dominated
by soft-gluon-pole (SGP) contributions on the side of the trans-
versely polarized proton [13,15], which involves the Efremov–
Teryaev–Qiu–Sterman (ETQS) function T F (x, x). However, a recent
fit of T F (x, x) to p↑ p → π X SSA data based on this assumption
[15] has led to the so-called “sign mismatch” crisis [38] involv-
ing the ETQS function and the transverse momentum dependent
(TMD) Sivers function extracted from semi-inclusive deep inelastic
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scattering (SIDIS) [39] — see also the discussion in [22]. A conceiv-
able resolution could be that SFPs and/or tri-gluon correlations in
the proton provide a significant effect. However, even when one
calculates the former [17] and includes them in a fit of T F (x, x)
[20], that function has the same sign as the one extracted in
Ref. [15]. Also, tri-gluon correlations seem to only be important
for processes dominated by gluon–gluon or photon–gluon fusion
(e.g., asymmetries in J/ψ production), and for pion production
will probably only be relevant in the small and negative xF regions
[40,41]. Therefore, neither SFPs nor tri-gluon correlations seem
likely to settle the sign mismatch issue. In addition, chiral-odd
collinear twist-3 functions on the side of the unpolarized proton
were shown to give insignificant contributions [42], and, therefore,
cannot help us with this matter. Other possible explanations, like
nodes in x or k⊥ in the Sivers function, have also been explored
[38,43], but also seem unable to resolve the crisis. One important
term that remains is the fragmentation mechanism, which could at
the very least give a piece comparable to the SGP contributions —
see [44–46] and references therein — and may be able to account
for the sign mismatch.

Actually, the fragmentation contribution has a counterpart in
the TMD factorization approach known as the Collins mechanism
[47]. This causes azimuthal modulations in the cross section for
processes like SIDIS and (almost back-to-back) di-hadron produc-
tion from electron–positron annihilation. These effects have been
measured in both processes [48–52], which has allowed for an
extraction of the Collins function [53–55]. In addition, both the
collinear twist-3 and TMD approaches to SSAs from fragmentation
in SIDIS have been shown to agree in an intermediate momen-
tum region where both formalisms are valid [56]. The TMD Collins
mechanism has also been used to describe the fragmentation piece
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Fig. 1. Feynman diagrams for the twist-3 matrix elements that give contributions to DC/c(3) . See the text for more details.

of the SSA in p↑ p → π X [45,46], although a rigorous proof has not
been put forth that such a framework can be applied to a process
with one large scale.

Within the collinear twist-3 approach, attempts have been
made to formulate the fragmentation term in the SSA for inclu-
sive pion production from proton–proton collisions [57]. However,
further work determined the contribution considered in Ref. [57]
vanishes due to a universality argument [58–62]. Recent calcula-
tions have rectified the situation, and the so-called derivative term
was computed for the first time in Ref. [44]. In the current work,
we derive not only this term but also the non-derivative term as
well as contributions involving quark–gluon–quark (qgq) correla-
tors. In addition, we briefly comment on the implications of this
and future studies on the resolution of the “sign mismatch” puz-
zle as well as the overall understanding of SSAs in proton–proton
collisions.

The Letter is organized as follows: in Section 2 we review the
collinear twist-3 formalism, and, in particular, discuss the relevant
unpolarized fragmentation functions (FFs). In Section 3 we present
the result for the fragmentation contribution to the single-spin de-
pendent cross section in p↑ p → h X and give a few details of the
calculation. We conclude the Letter in Section 4.

2. Collinear twist-3 formalism and unpolarized FFs

To start, let us make explicit the process under consideration,
namely,

A(P , �S⊥) + B
(

P ′) → C(Ph) + X, (1)

where the 4-momenta and polarizations of the incoming protons
A, B and outgoing hadron C are indicated. The Mandelstam vari-
ables for the process are defined as S = (P + P ′)2, T = (P − Ph)2,
and U = (P ′ − Ph)2, which on the partonic level give ŝ = xx′ S ,
t̂ = xT /z, and û = x′U/z. The longitudinal momentum fraction x
(x′) is associated with partons in the transversely polarized (unpo-
larized) proton. In analogy to the usually defined lightcone vectors
n = (0+,1−,0⊥) and n̄ = (1+,0−,0⊥), we also have nh ∼ Ph and
n̄h ∼ (P 0

h ,−�Ph) (with nh · n̄h = 1) as lightcone vectors associated
with the outgoing hadron’s direction of motion [44]. Such vec-
tors allow us to perform the appropriate twist expansion of the
fragmentation correlator in the context of this process. We also
note that ε

μν
⊥ = ερσμν n̄ρnσ with ε12⊥ = 1. We perform the calcu-

lation of the transverse SSA in the proton–proton cm-frame, with
the transversely polarized proton moving along the positive z-axis.

The first non-vanishing contribution to the spin-dependent
cross section is given by terms of twist-3 accuracy and reads

dσ(�Ph⊥, �S⊥) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗ DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗ DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗ DC/c(3), (2)

where a sum over partonic channels and parton flavors in each
channel is understood. In Eq. (2), fa/A(t) ( fb/B(t)) denotes the
distribution function associated with parton a (b) in proton A
(B), while DC/c(t) represents the fragmentation function associated
with hadron C in parton c. The twist of the functions is indicated
by t . The factors H , H ′ , and H ′′ give the hard parts correspond-
ing to each term, while the symbol ⊗ denotes convolutions in
the appropriate momentum fractions. As mentioned, the first term
in (2) has been analyzed previously in the literature [13,15–17].
Likewise, the second term, which involves chiral-odd twist-3 un-
polarized distributions, has also been studied and was shown to
be negligible because of the smallness of the hard scattering coef-
ficients [42]. The focus of this work will be on the third term in
Eq. (2) involving collinear twist-3 FFs. Therefore, for the situation
we consider, fa/A(2) = ha

1 and fb/B(2) = f b
1 , where h1 and f1 are

the standard twist-2 transversity distribution function and unpo-
larized distribution function, respectively. We then must determine
what contributions are possible for DC/c(3) .

For a detailed discussion of collinear twist-3 parton distribution
functions (PDFs) see, e.g., [19]; the same formalism can be gener-
alized to the fragmentation case. Here we consider the situation
where the outgoing hadron has a large minus-component of mo-
mentum. The twist-3 matrix elements that we must consider are
given by the diagrams in Fig. 1. (Note that tri-gluon correlators
are only relevant for fragmentation into a transversely polarized
hadron.) In the lightcone (A− = 0) gauge, these graphs lead to the
three matrix elements

〈ψ | 〉〈 |ψ̄〉, 〈∂⊥ψ | 〉〈 |ψ̄〉, 〈A⊥ψ | 〉〈 |ψ̄〉, (3)

which result from Figs. 1(a), (b), and (d), respectively. The symbol
| 〉〈 | represents the intermediate |Ph; X〉〈Ph; X | in the fragmenta-
tion correlators. We do not have to consider Fig. 1(c) because one
does not need to simultaneously take into account k⊥ expansion
and A⊥ gluon attachments (which would give rise to twist-4 con-
tributions).

Now that we have determined the relevant twist-3 matrix el-
ements, we must parameterize them in terms of twist-3 FFs that
will eventually be involved in our final result. We will follow the
work of Ref. [63] in defining these FFs and the relations between
them. We first focus on the qgq matrix element 〈A⊥ψ | 〉〈 |ψ̄〉. One
notices that this matrix element is not gauge invariant. In anal-
ogy to the qgq distribution correlators, this can be resolved in two
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