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Using a pair of linear invariant operators satisfying the Liouville–von Neumann equation, we find the
most general thermal density operator and Wigner function for time-dependent generalized oscillators.
The general Wigner function has five free parameters and describes the thermal Wigner function about
a classical trajectory in phase space. The contour of the Wigner function depicts an elliptical orbit with a
constant area moving about the classical trajectory, whose eccentricity determines the squeezing of the
initial vacuum.
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A quantum system of time-dependent oscillators has been a
continuing issue of interest since the advent of quantum mechan-
ics. Paul trap is one of such oscillators, which has a time-periodic
frequency [1]. The time-dependent generalized oscillators have
been used to study Berry’s phase [2,3] and the nonadiabtic phase
[4–6]. Various methods have been applied to time-dependent
quantum oscillators in many areas [7,8]. Agarwal and Kumar, and
Aliaga et al. studied statistical properties of time-dependent os-
cillators [9,10]. Also the density matrix and density operator for
time-dependent oscillators were studied in Refs. [11,12].

On the other hand, Lewis and Riesenfeld [13] introduced a
method to find the exact quantum states for the time-dependent
Schrödinger equation. In particular, for time-dependent oscillators
they found a quadratic invariant operator, satisfying the quantum
Liouville–von Neumann equation, whose eigenstates provide the
exact quantum states up to time-dependent phase factors. Each
complex solution to the classical equation of motion leads to a pair
of invariant operators, linear in position and momentum operators,
for time-dependent oscillators [14] and even for time-dependent
generalized oscillators [15].

In this Letter, using the linear invariant operators which sat-
isfy the Liouville–von Neumann equation, we find in a construc-
tive way the most general thermal density operator and Wigner
function up to the quadratic order in position and momentum op-
erators. This density operator is a squeezed and displaced state of a
thermal one. Further, the density matrix is the thermal one shifted
by a real classical solution, which has five free parameters. The
contour of the Wigner function follows an elliptical orbit with a
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constant area whose center moves and principal axes rotate along
a classical trajectory. The shape of the ellipse measured by eccen-
tricity determines the squeezing of the initial vacuum.

The time-dependent generalized quantum oscillator is de-
scribed by the Hamiltonian [2,3,15–17]

Ĥ(t) = X(t)

2
p̂2 + Y (t)

2
(p̂q̂ + q̂ p̂) + Z(t)

2
q̂2, (1)

where X , Y and Z explicitly depend on time. Lewis and Riesen-
feld have shown that the invariant operator satisfying the quantum
Liouville–von Neumann equation

ih̄
∂

∂t
Î(t) + [

Î(t), Ĥ(t)
] = 0, (2)

provides the exact quantum states of the time-dependent Schrö-
dinger equation as its eigenstates up to time-dependent phase fac-
tors. Following Ref. [15], we introduce a pair of linear invariant
operators for Eq. (2)

âu(t) = i√
h̄

[
u∗(t)p̂ − 1

X(t)

[
u̇∗(t) − Y (t)u∗(t)

]
q̂

]
,

â†
u(t) = − i√

h̄

[
u(t)p̂ − 1

X(t)

[
u̇(t) − Y (t)u(t)

]
q̂

]
, (3)

where u is a complex solution to the classical equation of motion

d

dt

(
u̇

X

)
+

[
X Z − Y 2 + ẊY − XẎ

X

](
u

X

)
= 0, (4)

with overdots denoting the derivative with respect to t . Normaliz-
ing the complex solution to satisfy the Wronskian condition

Wr
{

u, u∗} = 1

X

(
uu̇∗ − u∗u̇

) = i, (5)
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one can make the invariant operators satisfy the standard commu-
tation relation at equal time[
âu(t), â†

u(t)
] = 1. (6)

Another complex solution v to Eq. (4), which can be expressed
as

v(t) = μ∗u(t) − ν∗u∗(t) (7)

for complex constants μ and ν given by

μ = i Wr
{

v∗, u
}
, ν = i Wr

{
v∗, u∗}, (8)

leads to another set of the invariant operators âv(t) and â†
v(t). Now

the Wronskian condition on v

Wr
{

v, v∗} = i ⇔ |μ|2 − |ν|2 = 1, (9)

also guarantees the standard commutation relation at equal time[
âv(t), â†

v(t)
] = 1. (10)

In fact, these two sets of invariant operators are related through
the Bogoliubov transformation

âv(t) = μâu(t) + νâ†
u(t),

â†
v(t) = μ∗â†

u(t) + ν∗âu(t). (11)

The Bogoliubov transformation is written as the similarity trans-
form [9,18]

âv(t) = Ŝ−1(t)âu(t) Ŝ(t), â†
v(t) = Ŝ−1(t)â†

u(t) Ŝ(t), (12)

by the squeezing operator

Ŝ(t) = eiθμâ†
u(t)âu(t) exp

[
1

2
ei(θν−θμ) cosh−1 |μ|â† 2

u (t)

− 1

2
e−i(θν−θμ) cosh−1 |μ|â2

u(t)

]
, (13)

where μ = |μ|eiθμ and ν = |ν|eiθν . We may use the freedom in
choosing the overall constant phase of âv(t), which is not physi-
cally important, to fix the phase θμ = 0 [18]. Thus there are only
two parameters |μ| and θν or a complex constant ν , i.e. |ν| and θν .

The most general, quadratic, Hermitian invariant operator con-
structed from the pair âv(t) and â†

v(t) takes the form

Îv(t) = A

2
â† 2

v (t) + B

2

[
â†

v(t)âv(t) + âv(t)â
†
v(t)

]
+ A∗

2
â2

v(t) + Dâ†
v(t) + D∗âv(t) + E, (14)

where A and D are complex constants, and B and E are real con-
stants. By choosing μ and ν , i.e. u such that

Aμ∗2 + 2Bμ∗ν + A∗ν2 = 0, (15)

the invariant operator (14) can be written in the canonical form

Îu(t) = h̄ω0â†
u(t)âu(t) + δâ†

u(t) + δ∗âu(t) + ε, (16)

where

h̄ω0 = Aμ∗ν∗ + B
(|μ|2 + |ν|2) + A∗μν,

δ = Dμ∗ + D∗ν,

ε = E + 1

2
h̄ω0. (17)

Hence this implies that by allowing all the complex u’s satisfying
both Eqs. (4) and (5) the invariant operator (16) is general enough
for our purpose. From now on we shall work on the Fock bases
âu(t) and â†

u(t) for all the complex u’s and drop the subscript u.
Since the invariant operator (16) satisfies Eq. (2), we may use it

to define the density operator [12]

ρ̂(t) = 1

Z
e−βÎu(t). (18)

Here β is a free parameter that may be identified with the inverse

temperature of the system in equilibrium, and Z = Tr(e−βÎu (t)).
The density operator has five free parameters, i.e. βω0, a complex
constant δ, which is related with the classical position qc and mo-
mentum pc as will be shown below, and |μ| and θν in choosing u.
By introducing the displacement operator

D̂(z) = e−zâ†(t)+z∗â(t), (19)

with z = −δ/(h̄ω0), ε = |δ|2/(h̄ω0), we write the density operator
as

ρ̂(t) = D̂†(z)ρ̂T(t)D̂(z), (20)

where

ρ̂T(t) = 1

ZT
e−βh̄ω0â†(t)â(t), (21)

is a thermal density operator. It follows that Z = ZT due to the uni-
tary transformation (20). The coherent state, defined as â(t)|z, t〉 =
z|z, t〉, is also given by

|z, t〉 = D̂†(z)|0, t〉, (22)

where |0, t〉 is the vacuum state that is annihilated by â(t). The
position and momentum expectation values with respect to the
coherent state are

〈z, t|q̂|z, t〉 = √
h̄
(
uz + u∗z∗) ≡ qc,

〈z, t|p̂|z, t〉 = − Y

X
qc +

√
h̄

X

(
u̇z + u̇∗z∗) ≡ pc . (23)

These qc and pc satisfy the classical Hamilton equations

q̇c = Xpc + Y qc,

ṗc = −Y pc − Zqc. (24)

Now, from the definition of the thermal expectation value

〈Ô〉 = Tr
[
Ôρ̂(t)

] = Tr
[

D̂(z)ÔD̂†(z)ρ̂T
]
, (25)

we find the expectation values of position and momentum opera-
tors

〈q̂〉 = qc, 〈p̂〉 = pc, (26)

and those of quadratic operators〈
q̂2〉 = h̄u∗u(1 + 2n̄) + q2

c ,〈
p̂2〉 = h̄

X2

(
u̇∗ − Y u∗)(u̇ − Y u)(1 + 2n̄) + p2

c ,〈
1

2
(q̂ p̂ + p̂q̂)

〉
= h̄

2X

[(
u̇∗ − Y u∗)u + (u̇ − Y u)u∗](1 + 2n̄)

+ qc pc, (27)

where
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