Exact quantum-statistical dynamics of time-dependent generalized oscillators

Sang Pyo Kim ${ }^{\text {a }}$, Don N. Page ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Physics, Kunsan National University, Kunsan 573-701, Republic of Korea
${ }^{\mathrm{b}}$ CIAR Cosmology Program, Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J1, Canada

A R T I C L E I N F O

Article history:

Received 21 December 2012
Received in revised form 30 April 2013
Accepted 2 May 2013
Available online 7 May 2013
Editor: M. Cvetič

Abstract

Using a pair of linear invariant operators satisfying the Liouville-von Neumann equation, we find the most general thermal density operator and Wigner function for time-dependent generalized oscillators. The general Wigner function has five free parameters and describes the thermal Wigner function about a classical trajectory in phase space. The contour of the Wigner function depicts an elliptical orbit with a constant area moving about the classical trajectory, whose eccentricity determines the squeezing of the initial vacuum.

© 2013 Elsevier B.V. All rights reserved.

A quantum system of time-dependent oscillators has been a continuing issue of interest since the advent of quantum mechanics. Paul trap is one of such oscillators, which has a time-periodic frequency [1]. The time-dependent generalized oscillators have been used to study Berry's phase [2,3] and the nonadiabtic phase [4-6]. Various methods have been applied to time-dependent quantum oscillators in many areas [7,8]. Agarwal and Kumar, and Aliaga et al. studied statistical properties of time-dependent oscillators [9,10]. Also the density matrix and density operator for time-dependent oscillators were studied in Refs. [11,12].

On the other hand, Lewis and Riesenfeld [13] introduced a method to find the exact quantum states for the time-dependent Schrödinger equation. In particular, for time-dependent oscillators they found a quadratic invariant operator, satisfying the quantum Liouville-von Neumann equation, whose eigenstates provide the exact quantum states up to time-dependent phase factors. Each complex solution to the classical equation of motion leads to a pair of invariant operators, linear in position and momentum operators, for time-dependent oscillators [14] and even for time-dependent generalized oscillators [15].

In this Letter, using the linear invariant operators which satisfy the Liouville-von Neumann equation, we find in a constructive way the most general thermal density operator and Wigner function up to the quadratic order in position and momentum operators. This density operator is a squeezed and displaced state of a thermal one. Further, the density matrix is the thermal one shifted by a real classical solution, which has five free parameters. The contour of the Wigner function follows an elliptical orbit with a

[^0]constant area whose center moves and principal axes rotate along a classical trajectory. The shape of the ellipse measured by eccentricity determines the squeezing of the initial vacuum.

The time-dependent generalized quantum oscillator is described by the Hamiltonian [2,3,15-17]
$\hat{H}(t)=\frac{X(t)}{2} \hat{p}^{2}+\frac{Y(t)}{2}(\hat{p} \hat{q}+\hat{q} \hat{p})+\frac{Z(t)}{2} \hat{q}^{2}$,
where X, Y and Z explicitly depend on time. Lewis and Riesenfeld have shown that the invariant operator satisfying the quantum Liouville-von Neumann equation
$i \hbar \frac{\partial}{\partial t} \hat{I}(t)+[\hat{I}(t), \hat{H}(t)]=0$,
provides the exact quantum states of the time-dependent Schrödinger equation as its eigenstates up to time-dependent phase factors. Following Ref. [15], we introduce a pair of linear invariant operators for Eq. (2)
$\hat{a}_{u}(t)=\frac{i}{\sqrt{\hbar}}\left[u^{*}(t) \hat{p}-\frac{1}{X(t)}\left[\dot{u}^{*}(t)-Y(t) u^{*}(t)\right] \hat{q}\right]$,
$\hat{a}_{u}^{\dagger}(t)=-\frac{i}{\sqrt{\hbar}}\left[u(t) \hat{p}-\frac{1}{X(t)}[\dot{u}(t)-Y(t) u(t)] \hat{q}\right]$,
where u is a complex solution to the classical equation of motion
$\frac{d}{d t}\left(\frac{\dot{u}}{X}\right)+\left[X Z-Y^{2}+\frac{\dot{X} Y-X \dot{Y}}{X}\right]\left(\frac{u}{X}\right)=0$,
with overdots denoting the derivative with respect to t. Normalizing the complex solution to satisfy the Wronskian condition
$\mathrm{Wr}\left\{u, u^{*}\right\}=\frac{1}{X}\left(u \dot{u}^{*}-u^{*} \dot{u}\right)=i$,
one can make the invariant operators satisfy the standard commutation relation at equal time
$\left[\hat{a}_{u}(t), \hat{a}_{u}^{\dagger}(t)\right]=1$.
Another complex solution v to Eq. (4), which can be expressed as
$v(t)=\mu^{*} u(t)-v^{*} u^{*}(t)$
for complex constants μ and ν given by
$\mu=i \operatorname{Wr}\left\{v^{*}, u\right\}, \quad \nu=i \operatorname{Wr}\left\{v^{*}, u^{*}\right\}$,
leads to another set of the invariant operators $\hat{a}_{v}(t)$ and $\hat{a}_{v}^{\dagger}(t)$. Now the Wronskian condition on v
$\mathrm{Wr}\left\{v, v^{*}\right\}=i \quad \Leftrightarrow \quad|\mu|^{2}-|\nu|^{2}=1$,
also guarantees the standard commutation relation at equal time
$\left[\hat{a}_{v}(t), \hat{a}_{v}^{\dagger}(t)\right]=1$.
In fact, these two sets of invariant operators are related through the Bogoliubov transformation
$\hat{a}_{v}(t)=\mu \hat{a}_{u}(t)+\nu \hat{a}_{u}^{\dagger}(t)$,
$\hat{a}_{v}^{\dagger}(t)=\mu^{*} \hat{a}_{u}^{\dagger}(t)+v^{*} \hat{a}_{u}(t)$.
The Bogoliubov transformation is written as the similarity transform $[9,18]$
$\hat{a}_{v}(t)=\hat{S}^{-1}(t) \hat{a}_{u}(t) \hat{S}(t), \quad \hat{a}_{v}^{\dagger}(t)=\hat{S}^{-1}(t) \hat{a}_{u}^{\dagger}(t) \hat{S}(t)$,
by the squeezing operator

$$
\begin{align*}
\hat{S}(t)= & e^{i \theta_{\mu} \hat{a}_{u}^{\dagger}(t) \hat{a}_{u}(t)} \exp \left[\frac{1}{2} e^{i\left(\theta_{\nu}-\theta_{\mu}\right)} \cosh ^{-1}|\mu| \hat{a}_{u}^{\dagger 2}(t)\right. \\
& \left.-\frac{1}{2} e^{-i\left(\theta_{\nu}-\theta_{\mu}\right)} \cosh ^{-1}|\mu| \hat{a}_{u}^{2}(t)\right] \tag{13}
\end{align*}
$$

where $\mu=|\mu| e^{i \theta_{\mu}}$ and $\nu=|\nu| e^{i \theta_{\nu}}$. We may use the freedom in choosing the overall constant phase of $\hat{a}_{v}(t)$, which is not physically important, to fix the phase $\theta_{\mu}=0$ [18]. Thus there are only two parameters $|\mu|$ and θ_{ν} or a complex constant ν, i.e. $|\nu|$ and θ_{ν}.

The most general, quadratic, Hermitian invariant operator constructed from the pair $\hat{a}_{v}(t)$ and $\hat{a}_{v}^{\dagger}(t)$ takes the form

$$
\begin{align*}
\hat{\mathcal{I}}_{v}(t)= & \frac{A}{2} \hat{a}_{v}^{\dagger 2}(t)+\frac{B}{2}\left[\hat{a}_{v}^{\dagger}(t) \hat{a}_{v}(t)+\hat{a}_{v}(t) \hat{a}_{v}^{\dagger}(t)\right] \\
& +\frac{A^{*}}{2} \hat{a}_{v}^{2}(t)+D \hat{a}_{v}^{\dagger}(t)+D^{*} \hat{a}_{v}(t)+E \tag{14}
\end{align*}
$$

where A and D are complex constants, and B and E are real constants. By choosing μ and ν, i.e. u such that
$A \mu^{* 2}+2 B \mu^{*} v+A^{*} v^{2}=0$,
the invariant operator (14) can be written in the canonical form
$\hat{\mathcal{I}}_{u}(t)=\hbar \omega_{0} \hat{a}_{u}^{\dagger}(t) \hat{a}_{u}(t)+\delta \hat{a}_{u}^{\dagger}(t)+\delta^{*} \hat{a}_{u}(t)+\epsilon$,
where
$\hbar \omega_{0}=A \mu^{*} \nu^{*}+B\left(|\mu|^{2}+|\nu|^{2}\right)+A^{*} \mu \nu$,
$\delta=D \mu^{*}+D^{*} \nu$,
$\epsilon=E+\frac{1}{2} \hbar \omega_{0}$.

Hence this implies that by allowing all the complex u 's satisfying both Eqs. (4) and (5) the invariant operator (16) is general enough for our purpose. From now on we shall work on the Fock bases $\hat{a}_{u}(t)$ and $\hat{a}_{u}^{\dagger}(t)$ for all the complex u 's and drop the subscript u.

Since the invariant operator (16) satisfies Eq. (2), we may use it to define the density operator [12]
$\hat{\rho}(t)=\frac{1}{Z} e^{-\beta \hat{\mathcal{I}}_{u}(t)}$.
Here β is a free parameter that may be identified with the inverse temperature of the system in equilibrium, and $Z=\operatorname{Tr}\left(e^{-\beta \hat{\mathcal{I}}_{u}}(t)\right)$. The density operator has five free parameters, i.e. $\beta \omega_{0}$, a complex constant δ, which is related with the classical position q_{c} and momentum p_{c} as will be shown below, and $|\mu|$ and θ_{ν} in choosing u. By introducing the displacement operator
$\hat{D}(z)=e^{-z \hat{a}^{\dagger}(t)+z^{*}(t)}$,
with $z=-\delta /\left(\hbar \omega_{0}\right), \epsilon=|\delta|^{2} /\left(\hbar \omega_{0}\right)$, we write the density operator as
$\hat{\rho}(t)=\hat{D}^{\dagger}(z) \hat{\rho}_{\mathrm{T}}(t) \hat{D}(z)$,
where
$\hat{\rho}_{\mathrm{T}}(t)=\frac{1}{Z_{\mathrm{T}}} e^{-\beta \hbar \omega_{0} \hat{a}^{\dagger}(t) \hat{a}(t)}$,
is a thermal density operator. It follows that $Z=Z_{\mathrm{T}}$ due to the unitary transformation (20). The coherent state, defined as $\hat{a}(t)|z, t\rangle=$ $z|z, t\rangle$, is also given by
$|z, t\rangle=\hat{D}^{\dagger}(z)|0, t\rangle$,
where $|0, t\rangle$ is the vacuum state that is annihilated by $\hat{a}(t)$. The position and momentum expectation values with respect to the coherent state are
$\langle z, t| \hat{q}|z, t\rangle=\sqrt{\hbar}\left(u z+u^{*} z^{*}\right) \equiv q_{c}$,
$\langle z, t| \hat{p}|z, t\rangle=-\frac{Y}{X} q_{c}+\frac{\sqrt{\hbar}}{X}\left(\dot{u} z+\dot{u}^{*} z^{*}\right) \equiv p_{c}$.
These q_{c} and p_{c} satisfy the classical Hamilton equations
$\dot{q}_{c}=X p_{c}+Y q_{c}$,
$\dot{p}_{c}=-Y p_{c}-Z q_{c}$.
Now, from the definition of the thermal expectation value
$\langle\hat{\mathcal{O}}\rangle=\operatorname{Tr}[\hat{\mathcal{O}} \hat{\rho}(t)]=\operatorname{Tr}\left[\hat{D}(z) \hat{\mathcal{O}} \hat{D}^{\dagger}(z) \hat{\rho}_{\mathrm{T}}\right]$,
we find the expectation values of position and momentum operators

$$
\begin{equation*}
\langle\hat{q}\rangle=q_{c}, \quad\langle\hat{p}\rangle=p_{c} \tag{26}
\end{equation*}
$$

and those of quadratic operators

$$
\begin{align*}
& \left\langle\hat{q}^{2}\right\rangle=\hbar u^{*} u(1+2 \bar{n})+q_{c}^{2} \\
& \begin{aligned}
&\left\langle\hat{p}^{2}\right\rangle=\frac{\hbar}{X^{2}}\left(\dot{u}^{*}-Y u^{*}\right)(\dot{u}-Y u)(1+2 \bar{n})+p_{c}^{2} \\
&\left\langle\frac{1}{2}(\hat{q} \hat{p}+\hat{p} \hat{q})\right\rangle= \frac{\hbar}{2 X}\left[\left(\dot{u}^{*}-Y u^{*}\right) u+(\dot{u}-Y u) u^{*}\right](1+2 \bar{n}) \\
&+q_{c} p_{c}
\end{aligned}
\end{align*}
$$

where

https://daneshyari.com/en/article/8188497

Download Persian Version:

https://daneshyari.com/article/8188497

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: sangkim@kunsan.ac.kr (S.P. Kim), don@phys.ualberta.ca (D.N. Page).

