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We use the generalized Julia–Toulouse approach (GJTA) for condensation of topological currents (charges
or defects) to argue that massive photons can coexist consistently with Dirac monopoles. The Proca the-
ory is obtained here via GJTA as a low energy effective theory describing an electric condensate and the
mass of the vector boson is responsible for generating a Meissner effect which confines the magnetic de-
fects in monopole–antimonopole pairs connected by physical open magnetic vortices described by Dirac
brane invariants, instead of Dirac strings.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In his seminal work [1], Dirac established a theory of magnetic
monopoles interacting with massless vector bosons, from which
emerged a possible explanation for the electric charge quantiza-
tion observed in Nature: the mere existence of a monopole would
imply in the quantization of the electric charge in multiples of the
inverse of the magnetic charge, what is based on the consistency
condition for the magnetic Dirac string to be unobservable at the
quantum level. Since then, the physics involving Dirac monopoles
has been proved to be useful also to investigate other physical sce-
narios [2–4].

Our aim in this work is to generalize the Dirac’s non-minimal
prescription for the case where the vector bosons are massive, with
the hope to clarify some misunderstandings found in the literature,
like the claims that Dirac monopoles and massive photons cannot
coexist and that the Dirac strings would become observable when
the vector bosons are massive [5].

One of the main points involved in this issue regards the fact
that the Dirac theory of monopoles was developed in the context
of massless vector bosons and its extension to the case of mas-
sive photons is not immediate. Another key point refers to the
very general observation that a massive photon generates a Meiss-
ner effect, which confines magnetic probe sources. Together with
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these observations, one must also keep in mind that, since the
Dirac strings are unphysical artifacts used to introduce monopoles
in a theory with a single gauge potential defined over the whole
spacetime, except at the location of the world-surfaces of these
strings, there are no physical processes that could turn these Dirac
branes into observables: this point is in fact a consistency con-
dition that must be always satisfied in order to keep the con-
sistency of the formalism. These basic observations can be gath-
ered together through the use of a generalization of the so-called
Julia–Toulouse approach for condensation of topological currents
(charges or defects).

The original Julia–Toulouse approach [6,7] is a prescription used
to construct a low energy effective theory for a system with
condensed charges or defects, having previous knowledge of the
model describing the system in the regime where these sources
are dilutely distributed through the space and also of the sym-
metries expected for the regime where the charges or the defects
condense. Based mainly on [6,7], and taking also into account the
ideas developed in [2,8] regarding the formulation of ensembles
of charges and defects, we introduced in [9,10] a generalization
of the Julia–Toulouse approach, whose main feature is a careful
treatment of a local symmetry which we call as the Dirac brane
symmetry, which is independent of the usual gauge symmetry [2],
and consists in the freedom of deforming the Dirac strings with-
out any observable consequences. In what follows, we are going to
call this generalized prescription as the generalized Julia–Toulouse
approach (GJTA).

In the present work we shall follow a very general strategy to
obtain a consistent formulation of the Proca theory in the presence
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of external monopoles. We begin with the Maxwell theory in the
presence of diluted electric charges and introduce external mag-
netic defects through the original Dirac’s non-minimal substitution,
which can be safely applied to massless gauge theories. We then
use the GJTA to construct the Proca theory in the regime where the
electric charges condense, getting the correct definition of the mas-
sive electrodynamics in the presence of Dirac monopoles. Through
this process, we shall see that due to the Dirac’s veto [1], the
Dirac branes are effectively removed from the formalism in the
electric condensed regime, giving place to physical open magnetic
vortices with a monopole–antimonopole pair in their ends. These
open vortices are described by Dirac brane invariants correspond-
ing to the confining magnetic flux tubes. In particular, since the
magnetic probe sources are confined in this scenario due to the
Meissner effect associated to the mass acquired by the vector bo-
son as a result of the electric condensation process, it is impossible
to introduce isolated magnetic defects into the massive electro-
dynamics, the only possibility being the introduction of mesonic
monopole–antimonopole pairs (as far as we know, this conclusion
was firstly explicitly pointed out in [11]). However, contrary to the
usual claim found in the literature [2,4,5,7,11,12], the monopoles
with opposite magnetic charges in these pairs are not connected
by Dirac strings, but instead, they are connected by physical con-
fining magnetic flux tubes described by Dirac brane invariants and
we show how these structures emerge in the formalism by taking
the Dirac brane symmetry carefully into account.

2. Massive electrodynamics and Dirac monopoles

We are going to work in (3 + 1)-dimensional Minkowski space-
time R

1,3 and make use of natural units with c = h̄ = 1.
The partition function of the Maxwell theory in the presence of

diluted electric charges and magnetic monopoles is given by:

Zd[ J1, j1] =
∫

G.F .

DA1 exp

{
i

∫

R1,3

[
−1

2
(dA1 − g ∗ χ2)

∧ ∗(dA1 − g ∗ χ2) − e A1 ∧ ∗ J1

]}
, (1)

where J1 = δΣ2 is the topological electric current which local-
izes the world-line of the electric charge e, the physical boundary
of the world-surface of the electric Dirac string localized by the
Chern–Kernel Σ2 and j1 = δχ2 is the topological magnetic current
which localizes the world-line of the magnetic charge g , the phys-
ical boundary of the world-surface of the magnetic Dirac string
localized by the Chern–Kernel χ2. The acronym “G.F.” stands for
some “gauge fixing” procedure that must be used at some stage of
the calculations.

As discussed in [10], the magnetic Dirac brane symmetry cor-
responds to the local invariance of (1) under deformations of the
magnetic Dirac branes that keep fixed their physical boundaries
corresponding to the monopole currents and also satisfies the
Dirac’s veto [1,13], which prohibits the magnetic Dirac branes of
crossing the electric world-lines. This local symmetry implies in
the Dirac charge quantization condition [1,2], eg = 2πn, n ∈ Z, as a
consistency condition for the invisibility of the Dirac branes, which
are unphysical.

Let us work with the electromagnetic dual of (1). For this sake,
we make use of the master representation of (1):

Zd[ J1, j1] =
∫

G.F .

DA1DG2 exp

{
i

∫

R1,3

[
1

2
G2 ∧ ∗G2

− G2 ∧ ∗(dA1 − g ∗ χ2) − e A1 ∧ ∗ J1

]}
, (2)

from which we can return to the original representation (1) after
integrating out the auxiliary field G2. Instead of this, we integrate
out the gauge field A1 in (2), obtaining the dual representation:

Zd[ J1, j1] =
∫

DG2δ[d ∗ G2 + e ∗ J1]

× exp

{
i

∫

R1,3

[
1

2
G2 ∧ ∗G2 − gG2 ∧ χ2

]}

=
∫

G.F .

DC1 exp

{
i

∫

R1,3

[
−1

2
(dC1 − e ∗ Σ2)

∧ ∗(dC1 − e ∗ Σ2) + gC1 ∧ ∗ j1 − eg ∗ Σ2 ∧ ∗χ2

]}

=
∫

G.F .

DC1 exp

{
i

∫

R1,3

[
−1

2
(dC1 − e ∗ Σ2)

∧ ∗(dC1 − e ∗ Σ2) + gC1 ∧ ∗ j1

]}
, (3)

where the dual gauge field C1 has emerged by solving the func-
tional constraint d ∗ G2 = −e ∗ J1 ⇒ ∗G2 = dC1 − e ∗ Σ2 and, in
passing to the last line of (3), we used that −eg

∫
R1,3 ∗Σ2 ∧ ∗χ2 =

−egN , where N is an integer corresponding to the intersection
number between the electric and magnetic Dirac branes, such that,
due to the Dirac charge quantization condition, the complex ex-
ponential of this term gives 1 and makes no contribution in the
partition function [2,14]. The dual representation (3) is physically
equivalent to the original representation (1), but here the cou-
plings are inverted: the dual gauge field couples minimally to
the monopole currents and non-minimally to the electric charges.
Hence, from the point of view of the dual gauge field, the elec-
tric Dirac branes are seen as defects, being C1 and dC1 singular
over these branes. Notice, however, that the non-minimal coupling
(dC1 −e∗Σ2), which represents the physical electromagnetic fields,
is regular everywhere, since the singularity of dC1 is exactly can-
celed out by the singular term ∗Σ2 [2,4].

At this point, we are ready to apply the GJTA and consider the
effects of a electric charge condensation in this system. The con-
densation of electric charges is represented here by a proliferation
of the electric world-lines, which implies in a proliferation of the
electric Dirac branes from which these world-lines are boundaries.
Due to the proliferation of the electric Dirac branes, the dual gauge
field becomes ill-defined in almost the whole space and its degrees
of freedom are not adequate to describe the system in the electric
condensed regime. However, the non-minimal coupling remains
regular everywhere. The GJTA in this picture consists in taking the
regular non-minimal coupling as a new field describing the low
energy excitations of the electric condensate [7]:

(dC1 − e ∗ Σ2)
cond.�−→ mH2, (4)

where m is a phenomenological mass scale associated to the elec-
tric condensate. Notice that the prescription (4) effectively pro-
motes a dynamical term for the massless 1-form gauge field C1
describing the system in the diluted regime to a mass term for
the 2-form Kalb–Ramond field H2 describing the system in the
condensed regime: this rank-jumping of the field describing the
excitations of the theory and the associated mass gap generation
constitute a signature of the condensation of topological currents in
the picture where the condensing currents are non-minimally cou-
pled to the gauge field describing the theory in the diluted regime
[6,7,9,14].
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