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Massive gravity (mGR) is a 5(= 2s+1) degree of freedom, finite range extension of GR. However, amongst
other problems, it is plagued by superluminal propagation, first uncovered via a second order shock
analysis. First order mGR shock structures have also been studied, but the existence of superluminal
propagation in that context was left open. We present here a concordance of these methods, by an
explicit (first order) characteristic matrix computation, which confirms mGR’s superluminal propagation
as well as acausality.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A natural physical question is whether gravity is necessarily in-
finite range—like its non-abelian Yang–Mills (YM) counterpart—or
whether “nearby”, massive, extensions are also permitted, at least
as effective theories within a certain domain of validity. This ques-
tion was first studied at linearized level almost 80 years ago by
Fierz and Pauli (FP) [1], who constructed a massive spin s = 2
model with the required 2s + 1 = 5 degrees of freedom (DoF).
Even this was nontrivial, as the “natural” DoF count would be
six–the number of components of the symmetric 3-tensor hij gov-
erning the kinetic, linearized Einstein, action. Indeed (up to field
redefinitions) only one mass combination, m2(hμν ḡνρhρσ ḡσμ −
hμν ḡμνhρσ ḡρσ ), accomplishes this so long as the fiducial metric
ḡμν is Einstein (Gμν(ḡ) ∝ ḡμν ) [2]. The (observationally necessary)
extension to the non-linear domain, with the full scalar curva-
ture R(gμν) kinetic term and mass terms built from an arbitrary
(diffeomorphism invariant) combination of the dynamical metric
gμν and the fixed (but now potentially arbitrary) background ḡμν ,
proved more elusive.

Further developments began about halfway since the time of
FP, but almost immediately ground to a halt because it was shown
that, for generic mass terms, a sixth, ghost, excitation necessarily
develops beyond linear, FP, order [3]. This was catastrophic because
the ghost arises within the effective theory’s supposed domain of
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validity, reducing it to nil. It took the subsequent four decades
to discover that exactly three mass terms evade this no-go result.
One of these was discovered in [4] based upon the bimetric model
of [5]. Much later, that mass term and two others were uncovered
in mGR’s decoupling limit [6]. Absence of the “bulk” ghost mode
was finally proven in [7]. Predictably, it was time for the next blow
to strike: The very mass terms that avoided the ghost replaced that
woe with superluminal–tachyonic modes, discovered by analyzing
second order shocks [8]. This result was perhaps not surprising1

since superluminal behavior had already been uncovered in the
model’s Stückelberg sector and decoupling limit [10] as well as in a
spherically symmetric analysis on Friedmann–Lemaître–Robertson–
Walker (FLRW) backgrounds [11]. Concordantly, unstable cosmo-
logical solutions were discovered [12] (similar pathologies also
arise in other non-linear gravity models, such as f (T ) [13] and
Poincaré gauge gravity [14]). Moreover, mGR also seems not to al-
low static black hole solutions [15].

The characteristics of mGR were subsequently studied in [16]
in a certain first order formulation where a (generically) maximal
rank characteristic matrix was found. However, a study of zeros of
this matrix and thus superluminality was postponed in that work,
which focused on the relationship between first order shocks and
the second order shocks of [8]. In this work, we exhibit further
superluminal behavior in the first order setting and clarify the re-
lation between the various superluminal modes and acausality. We
also give a compact computation and formula for the (pathological)

1 It also follows a similar pattern of massive higher spin inconsistencies when
these models interact with background fields; see old results for s = 3/2,2 in both
E/M and GR backgrounds [9].
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mGR characteristic matrix by employing vierbeine and spin con-
nections. A toy scalar field example is given in the discussion,
which further illuminates our findings. The power of the charac-
teristic method [9] is that there is no need to wait the thirty odd
years it took for Gödel to discover closed timelike curves in GR,
but rather acausality can be detected without directly solving the
mGR field equations.2 Moreover the causal inconsistencies we find
are local, as opposed to the non-local Gödel type acausal anoma-
lies of GR. Our conclusion is that mGR is unphysical, leaving GR on
its isolated consistency pedestal.

2. Massive gravity

The model’s field equation is

Gμν(g) = τμν( f , g) := Λgμν − m2( fμν − gμν f ), (1)

where the metric gμν is dynamical and Gμν(g) is its Einstein ten-
sor. The rank two tensor

fμν := fμ
meνm

is built from the vierbein eμ
m of the dynamical metric gμν and a

non-dynamical vierbein fμm of a non-dynamical background/fidu-
cial metric ḡμν . All index manipulations will be performed using
the dynamical metric and vierbein, in particular f := fμmeμ

m . The
inverse background vierbein is denoted by �μ

m .
Of the three permitted bulk ghost-free mass terms, we focus

on the above, simplest, possibility (linear in the fiducial vierbein);
of the other two, one is known to have tachyonic behavior as
well [17], while the last is—formally—open because its covariant
constraint form, if any, is as yet unknown [18].

The parameter m is the FP mass when the theory is linearized
around an Einstein background ḡμν with cosmological constant Λ̄.
Requiring a good linearization (without constant terms in the lin-
ear equations of motion) demands the further parameter condition
Λ − Λ̄ + 3m2 = 0 (in particular flat backgrounds are achieved by
tuning the parameter Λ = −3m2). As a consequence of Eq. (1), the
vierbein obeys the symmetry constraint

f[μmeν]m = 0. (2)

3. First order formulation

To perform a first order shock and characteristic surface anal-
ysis we first write the system in a first order formulation in the
usual way. The dynamical metric gμν is replaced by the vier-
bein eμ

m (with gμν = eμ
mηmneν

n), and an off-shell spin connec-
tion ωμ

m
n determined by the torsion-free condition built into the

“Palatini” first order action,

∂[μeν]m + ω[μ|mne|ν]n = 0. (3)

The standard Bianchi identities for the Riemann tensor then be-
come first order integrability conditions

Rμνρσ (e,ω) − Rρσμν(e,ω) = 0 = R[μνρ]σ (ω, e). (4)

Note that there is no need to impose the condition ∇[μRνρ]σκ = 0
because it holds identically for any ω. The field equations imply
that the Einstein tensor obeys G(e,ω)μν = G(e,ω)νμ and, in turn,
the symmetry constraint (2). The latter’s curl gives a further inte-
grability condition

2 Actually, in [11], solutions with infinitely rapid propagation—in open FLRW
backgrounds—were explicitly given; these are likely to include examples of acausal
structures, though their energy scale is as yet unclear.

f[μσ Kνρ]σ = 0 (5)

where the contorsion,

Kμ
m

n := ωμ
m

n − ω( f )μ
m

n,

measures the failure of parallelograms of one (torsion-free) con-
nection to close with respect to the other and will play a crucial
role in further developments.

Going beyond kinematics, dynamics are generated by the first
order evolution equation

Gμν(e,ω) − Λgμν + m2( fμν − gμν f ) = 0, (6)

where G(e,ω) is obtained from the Riemann tensor R(ω) = dω +
ω ∧ ω in the usual way.

So far the choice of couplings τμν has not been invoked. The
covariant vector and scalar constraints (whose existence was ver-
ified in [18]) responsible for the ultimate ghost-free, 5 = 2s + 1,
s = 2 DoF count, depend in an essential way on this choice.3 They
have been calculated explicitly in [8] and read

0 = ∇μ[Gμν − τμν ] = m2eμ
m Kμ

m
neν

n =: m2 Kν, (7)

0 = 1

m2
∇ρ

(
�ρν∇μ[Gμν − τμν ]) + 1

2
gμν [Gμν − τμν ]

= −3m2

2
f − 1

2

[
eμ

neν
m R̄μν

mn + 4Λ
]

+ 1

2

[
Kμνρ K νρμ + KμK μ

]
. (8)

Note that the term KμK μ in the scalar constraint can be dropped
since it is the square of the vector one (7).

4. Shocks

We investigate first order shocks by positing
[
∂αeμ

m]
Σ

= ξαEμ
m,

[
∂αωμ

m
n
]
Σ

= ξαΩμ
m

n.

Since we wish to study superluminal propagation, we take the nor-
mal ξ to be timelike: ξμgμνξν = −1. For compactness of notation,
we denote the contraction of ξ on an index of any tensor by an “o”,
so ξ.V := Vo , where we use a lower dot to denote tensor contrac-
tion, to avoid confusion with the usual vector dot product. Also,
the operator �ν

μ := δν
μ + ξμξν is a projector; we will denote its

action on tensors by Latin indices, for example

V i := �ν
i Vν ⇒ VμV μ = V i V i − Vo Vo.

We split our shock analysis into two parts: First, we deal
with the consequences of the “kinematical” equations, namely
Eqs. (3)–(4), and then turn to the dynamical equation, Eq. (6) and
its constraints given by Eqs. (2), (5), (7), (8). These will give alge-
braic conditions on the shock profiles Eμ

m and Ωμ
m

n; there would
be causal consistency only if these conditions forced all shock pro-
files to vanish.

Firstly, we observe that the discontinuity in the torsion-free
condition (3) implies

ξ[μEν]ρ = 0.

Multiplying by ξμ we find

Eμν = −ξμEoν .

3 To be precise, a vector constraint exists for any algebraic coupling τμν , but the
condition it imposes on fields is τ -dependent. The very existence of a scalar con-
straint hinges on the exact choice of τ .
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