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We present the results for three-loop beta-functions for Yukawa couplings of heavy Standard Model
fermions calculated within the unbroken phase of the model. The calculation is carried out with the
help of the MINCER program in a general linear gauge, and the final result is independent of the gauge-
fixing parameters. In order to calculate three-point functions, we made use of infrared rearrangement
(IRR) trick. Due to the chiral structure of the SM a careful treatment of loops with fermions is required
to perform the calculation. It turns out that gauge anomaly cancellation in the SM allows us to obtain
the result by means of the semi-naive treatment of γ5.
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The Yukawa couplings being the fundamental parameters of
the Standard Model (SM) Lagrangian describe the interactions of
quarks and leptons with the Higgs field. Having in mind the dis-
covery of the Higgs boson candidate [1,2] one can hope that
some day the values of Yukawa couplings will be deduced di-
rectly from the experimental data (see, e.g., the discussion pre-
sented in Ref. [3]). In order to obtain a very precise SM prediction
for the running Yukawa couplings at some high-energy scale, one
usually uses known masses of quarks and leptons [4] since it is
the Yukawa interactions that give the fundamental fermions their
masses after spontaneous electroweak symmetry breaking. Due to
the observed hierarchy of the SM fermion masses the correspond-
ing values are usually defined at different scales, so one inevitably
makes use of renormalization group equations (RGE) to connect
these scales. The so-called threshold (matching) corrections (see
Refs. [5,6] for the case of running masses and Yukawa couplings)
are also very important for extractions of the running SM param-
eters defined in the minimal subtraction (MS) scheme, in which
counter-terms and beta-functions have a very simple polynomial
structure. It also should be mentioned that contrary to leptons,
quarks are not observed as free particles, so the pole mass which
is usually associated with the physical mass of a particle, although
being a gauge-invariant and infrared finite quantity [7,8], suffers
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from the so-called renormalon ambiguity [9,10]. This intrinsic un-
certainty of the quark pole mass is estimated to be of the order
of ΛQCD � 200 MeV. For the top quark one usually neglects this
uncertainty since the corresponding mass Mt = 175 GeV is much
bigger than ΛQCD . Moreover, it is generally believed that due to
the short lifetime the t-quark does not have time to hadronize, so
the notion of the pole mass can be used in this case. According to
the recent studies of the relation between the MS-running mass of
the top quark and the corresponding pole mass, electroweak cor-
rections can become important and for the observed value of the
Higgs boson mass can severely cancel the QCD contribution [6]. As
a consequence, theoretical uncertainty in determination of the top
quark Yukawa coupling is reduced, thus calling for more precise
determination of the corresponding RGEs. For all the other quarks
one usually uses the MS masses defined initially in the context of
QCD (see, e.g., Ref. [11] and references therein).

The SM Higgs boson with Mh = 125 GeV decays predominately
into the bb̄ pairs. In spite of the fact that this decay mode is very
hard to observe due to the enormous QCD background it is obvi-
ous that the precise value of the corresponding Yukawa coupling is
required to test whether the SM correctly describes Nature at the
electroweak scale. If one considers leptonic decays of the Higgs
boson, the most promising decay channel is the tree-level decay
to a tau-anti-tau pair. These facts somehow motivate our study
of the three-loop contribution to the corresponding Yukawa beta-
functions.

Moreover, we would like to stress here that a separate study
of the high-energy behavior of the SM can also be of great
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importance. One can use RGE to find the scale where New Physics
should enter the game, e.g., to unify the interactions or stabilize
the Higgs potential [12–17].

One- and two-loop results for SM beta-functions have been
known for quite a long time [18–31] and are summarized in [32].

Not long ago full three-loop gauge coupling beta-functions were
calculated [33,34]. The beta-functions for the Higgs self-coupling
and top Yukawa coupling were also considered at three loops [35].
However, in Ref. [35], all the electroweak couplings were neglected
together with the Yukawa couplings of other SM fermions. In this
Letter, we provide the full analytical result for the three-loop beta-
functions of the strongest Yukawa couplings yt , yb , yτ for the
three heaviest SM fermions (top, bottom, and tau). We take into
account all the interactions of the SM.

Let us briefly define our notation. The full Lagrangian of the un-
broken SM which was used in this calculation is given in our pre-
vious paper [34]. However, we do not keep the full flavor structure
of Yukawa interactions but use the following simple Lagrangian
which describes fermion-Higgs interactions

LYukawa = −yt
(

Q̄ Φc)tR − yb(Q̄ Φ)bR − yτ (L̄Φ)τR + h.c. (1)

with Q = (t,b)L , and L = (ντ , τ )L being SU(2) doublets of left-
handed fermions of the third generation, uR , tR , and τR are the
corresponding right-handed counter parts.1 The Higgs doublet Φ

with Y W = 1 has the following decomposition in terms of the
component fields:

Φ =
(

φ+(x)
1√
2
(h + iχ)

)
, Φc = iσ 2Φ† =

( 1√
2
(h − iχ)

−φ−

)
. (2)

Here a charge-conjugated Higgs doublet is introduced Φc with
Y W = −1.

For loop calculations it is convenient to define the following
quantities:
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(
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16π2
,
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16π2
,
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16π2
,
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16π2
,
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16π2
,
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16π2
,

λ

16π2
,

ξG , ξW , ξG

)
, (3)

where we use the SU(5) normalization of the U(1) gauge cou-
pling g1. We also stress that the calculation is carried out in a
general linear Rξ gauge, so the renormalization of all three gauge-
fixing parameters ξG , ξW , and ξB , given in Ref. [34], is required.

The Yukawa beta-functions are extracted from the correspond-
ing renormalization constants which relate bare couplings to the
renormalized ones in the MS-scheme. The latter are found with
the help of the following formulae:

Z y f = Z f f h√
Z f L Z f R Zh

or Z y f = Z f f χ√
Z f L Z f R Zχ

, f = t,b, τ , (4)

where Z f f h and Z f f χ are the renormalization constants for the
three-point vertices involving two fermions f and the Higgs h or
the would-be Goldstone boson χ , respectively. The renormalization
constants Z f L , Z f R for left- and right-handed fermions, and Zχ and
Zh for the neutral components of the Higgs doublet are obtained
from the corresponding self-energy diagrams.

In order to extract a three-loop contribution to the considered
renormalization constants, it is sufficient to know the two-loop
results for the gauge and Yukawa couplings and the one-loop ex-
pression for the Higgs self-interaction.

The relation between the bare and renormalized parameters
can be written in the following way

1 Here we assume that neutrinos are massless.

ak,Bareμ
−2ρkε = Zak ak(μ) = ak +

∞∑
n=1

c(n)

k

1

εn
, (5)

where ρk = 1/2 for the gauge and Yukawa constants, ρk = 1 for the
scalar quartic coupling constant, and ρk = 0 for the gauge-fixing
parameters. The bare couplings are defined within the dimension-
ally regularized [36] theory with D = 4 − 2ε . The four-dimensional
beta-functions, denoted by βi , are defined via2

βi(ak) = dai(μ,ε)

d lnμ2

∣∣∣∣
ε=0

, βi = β
(1)
i + β

(2)
i + β

(3)
i + · · · (6)

with β
(l)
i being the l-loop contribution to the beta-function for ai .

The expression for βi can be extracted from the corresponding
renormalization constants (5) with the help of

βi =
∑

l

ρlal
∂c(1)

i

∂al
− ρic

(1)
i . (7)

Here, again, ai stands for both the gauge couplings and the gauge-
fixing.

It should be noted that the divergent part of the considered
three-point functions should resemble the tree-level structure

�L = − y f√
2

f̄ f h − i
y f√

2
f̄ γ5 f χ. (8)

Since we separately consider the contributions to the f̄ L f Rφ and
f̄ R f Lφ vertices (φ = h,χ ), we have to be sure that the correspond-
ing divergencies sum up to give the unit matrix in the case of the
Higgs boson or γ5 in the case of χ . This serves as an additional
self-consistency check of our result.

It turns out that due to the gauge symmetry the Higgs field h
and the would-be Goldstone boson χ renormalize in the same way
so that Zχ = Zh . Moreover, the same reasoning can be applied to
the considered Yukawa vertices giving Z f f h = Z f f χ . This fact was
also checked by explicit calculation at the three-loop level.

Actually, it is not trivial to satisfy these two requirements (to
conserve the chiral structure of the Lagrangian and do not break
the gauge invariance) at three loops. Both the issues are related to
the γ5 problem present in dimensionally regularized theories. It is
known from the literature (see, e.g., Ref. [37] and recent explicit
calculation [35]) that the traces with an odd number of γ5 appear-
ing for the first time in the three-loop diagrams require special
treatment. We closely follow the semi-naive approach presented in
Ref. [38]. First of all, we anticommute γ5 with other matrices and
use γ 2

5 = 1. In the “even” traces all γ5 are contracted with each
other, so the corresponding expressions can be treated naively in
dimensional regularization. In “odd” traces we are left with only
one γ5. These traces are evaluated as in four dimensions and pro-
duce totally antisymmetric tensors via the relation

tr
(
γ μγ νγ ργ σ γ5

) = −4iεμνρσ (9)

with ε0123 = 1.
Since we are using both the γ5 anticommutativity and the

four-dimensional relation (9), the cyclicity of the trace should be
relinquished [39]. Due to this, a comment is in order about our
positioning of γ5 within the “odd” traces. It is known that differ-
ent prescriptions give rise to an ambiguity of order D − 4. In our
calculation the kinematical structure of a diagram, including the
starting point for a closed fermion loop, is fixed automatically by

2 For the Yukawa couplings it is also convenient to consider the running of the
coupling itself. It is obvious that βyi = (βi/ai)yi/2 with i = t,b, τ .
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