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In this work we analyze a non-interacting one-dimensional polymer Bose–Einstein condensate in a har-
monic trap within the semiclassical approximation. We use an effective Hamiltonian coming from the
polymer quantization that arises in loop quantum gravity. We calculate the number of particles in or-
der to obtain the critical temperature. The Bose–Einstein functions are replaced by series, whose high
order terms are related to powers of the polymer length. It is shown that the condensation temperature
presents a shift respect to the standard case, for small values of the polymer scale. In typical experimen-
tal conditions, it is possible to establish a bound for λ2 up to � 10−16 m2. To improve this bound we
should decrease the frequency of the trap and also decrease the number of particles.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Several quantum gravity models suggest that the relation be-
tween energy and momentum of microscopic particles must be
modified as a consequence of the quantum structure of space–time
[1–9]. A deformed dispersion relation, emerges as an ideal tool in
the search for possible effects related to the quantum structure of
space–time. Nevertheless, the most difficult aspect in the search
of experimental evidence relevant for the quantum gravity prob-
lem is the smallness of the possible effects [3,4]. Unfortunately,
due to this fact, the possible bounds for the deformation param-
eters, open a wide range of possible magnitudes, which implies a
significant challenge.

Among the models that introduce such deformations, polymer
quantum systems are simple quantum mechanical models quan-
tized in a similar way as in loop quantum gravity [10,11]. These
systems provide scenarios where some characteristics of the full
theory, specially the discrete nature of space, can be explored in
a simpler context [12–16]. Indeed, in polymer quantum mechanics
the momentum operator cannot be defined, hence a regularized
operator is proposed by the introduction of the so-called poly-
mer length scale [10,11]. Particularly, from this model an effective
Hamiltonian which contains some trace of the granularity of space
can be drawn [17].

The use of Bose–Einstein condensates as a tool in the search
of quantum gravity effects, for instance, in the context of Lorentz
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violations, or to provide phenomenological constrains on Planck
scale physics, has produced several interesting research [5,6,18–25]
(and references therein). In these works, the possible effects arising
from Planck scale physics by looking at some modifications in the
thermodynamic properties of Bose-Einstein condensates was ex-
plored. Since its observation with the help of magnetic traps [27–
30], the phenomenon of Bose–Einstein condensation, from the ex-
perimental and theoretical point of view, has spurred an enormous
amount of publications [30–51,58,59] (and references therein). In
particular the condensates have been studied in different spatial
dimensions [34,52,53,59]. Although, a one-dimensional conden-
sate can never be reached, it is possible to obtain a quasi-one-
dimensional condensate, by using extremely anisotropic traps [34,
35,54,55]. Additionally, the condensation process of a bosonic gas
in one dimension, trapped in a box or in a harmonic oscillator po-
tential, has a very particular behavior. In this situation, apparently
the condensation is not possible in the thermodynamic limit if one
assumes that the ground state energy is zero, or equivalently, if the
associated chemical potential is zero at the condensation tempera-
ture. However, taken into account the minimum energy associated
to the system, the condensation process is possible at finite tem-
perature [34,35,49,59].

The aim of this work is to analyze the properties of a polymer
one-dimensional condensate trapped in a harmonic oscillator po-
tential, within the semiclassical approximation, in order to obtain
representative bounds for the polymer length scale. We will show
also that for this one-dimensional system the functional form of
the relevant thermodynamic quantities, particularly, for the num-
ber of particles, can be expressed by series of the so-called Bose–
Einstein functions. This series converges when the polymer scale
is small enough. Finally, by the introduction of the ground state
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energy associated to this system, we calculate the shift in the
usual condensation temperature caused by the polymer scale λ2.
These facts allow us to bound the polymer scale by using one-
dimensional finite size systems.

2. Polymer quantization

Let us now present some of the main results of polymer quan-
tization [10,11]. This quantization arises from loop quantum grav-
ity [56]. In the loop or polymer representation the corresponding
Hilbert space Hpoly is spanned by the basis states {|x j〉}, whose
coefficients have a suitable fall-off [10], with the following inner
product

〈xi |x j〉 = δi, j, (1)

where δi, j is the Kronecker delta. The polymer Hilbert space can
be represented as Hpoly = L2(Rd,dμd), where dμd is the corre-
sponding Haar measure, being Rd the real line endowed with the
discrete topology, that is, the dual of the Bohr compactification of
the real line [10,56]. The basic operators in this quantization are
the position and translation. The position operator x̂ acts as usual
by multiplication

x̂|x j〉 = x j|x j〉,

while the translation operator V̂ (λ) moves to a position of arbi-
trary distance λ

V̂ (λ)|x j〉 = |x j − λ〉.

In the Schrödinger quantization, the operator V̂ (λ) is weakly con-
tinuous in λ and the momentum operator is defined as its in-
finitesimal generator. However, in the polymer representation the
translation operator V̂ (λ) fails to achieve this condition, i.e., it
is not weakly continuous on λ due to the discrete structure as-
signed to space [10]. Therefore, there is no Hermitian operator
as infinitesimal generator of translations and thus, the momentum
operator is not well defined. Due to this fact, any phase space func-
tion has to be regularized by the introduction of a lattice of fixed
positive length. We interpret this length as a fundamental scale
that is called the polymer length scale [10]. With this regulariza-
tion, the polymer Hamiltonian can be defined as follows

Ĥλ = h̄2

2mλ2

[
2 − V̂ (λ) − V̂ (−λ)

] + Û (x), (2)

where Û (x) is the potential term. The action of the Hamiltonian (2)
decomposes the polymer Hilbert space Hpoly, into a continuum of
separable superselected subspaces, each with support on a regular
lattice {nλ + x0 | n ∈ Z}, with x0 ∈ [0, λ) that parameterizes a par-
ticular superselected sector [10]. Notice that the Hamiltonian (2)
can be formally written as

h̄2

2mλ2

̂
sin2

(
λp

h̄

)
+ Û (x). (3)

We can use this expression to obtain the effective Hamiltonian,
simply by replacing the kinetic term with the square of the sine
function.

It is worth mentioning, as was pointed out in [17], that the ef-
fective three-dimensional case present some complications in cal-
culating analytically the integrals. Due to this fact, in the present
work we restrict ourselves to the one-dimensional case.

3. Condensation temperature

Let us start with a one-dimensional effective polymer Hamilto-
nian [17], given by

H = h̄2

2mλ2
sin2

(
λpx

h̄

)
+ U (x) (4)

where U (x) = mω2
x x2/2 is the one-dimensional harmonic oscilla-

tor potential that model the trap, and λ is the so-called polymer
length scale. Therefore, the semiclassical energy spectrum associ-
ated to (4) can be expressed as follows

εp = h̄2

2mλ2
sin2

(
λpx

h̄

)
+ mω2

x x2

2
. (5)

The associated one-dimensional spatial density can be written as
[34,59]

n(x) = 1

2π h̄

∫
dpx

eβ(εp−μ) − 1
, (6)

where, as usual, β = 1/κT , being κ the Boltzmann constant, and
μ is the corresponding chemical potential. Consequently, the total
number of particles of the system is

N =
∫

n(x)dx. (7)

Let us calculate the spatial density n(x) for the polymer case.
To do so we need to calculate the integral (6) substituting the en-
ergy (5)

n(x) = 1

2π h̄

∫
dpx

Z−1(x)exp(
βh̄2

2mλ2 sin2(
λpx

h̄ )) − 1
, (8)

where Z(x) = exp[β(μ − mω2
x x2

2 )]. The integrand of (8) can be re-
placed by a geometric series

n(x) = 1

2π h̄

∫ ∞∑
j=1

(
Z(x) e

− βh̄2

2mλ2 sin2(
λpx

h̄ )) j
dpx. (9)

The sine function in the argument of the exponential can be writ-
ten by using an identity, then we interchange the summation and
the integration

n(x) = 1

2π h̄

∞∑
j=1

Z j(x)

∫
e
− jβh̄2

4mλ2 [1−cos( 2λpx
h̄ )]

dpx. (10)

The last integral can be recognized as a modified Bessel function
of first kind [60], if we introduce a regulator for the integral that
corresponds to the polymer length λ [15], with the result

n(x) = 1

2π h̄

h̄π

λ

∞∑
j=1

Z j(x) e
− jβh̄2

4mλ2 I0

(
jβh̄2

4mλ2

)
. (11)

We obtain the total number of particles by integrating (11) over
all space. The only x-dependent function is Z(x), and then the cor-
responding integration is straightforward

N = 1

2

√
2π

mβω2
x

∞∑
j=1

e
− jβh̄2

4mλ2

λ
I0

(
jβh̄2

4mλ2

)
e jμβ

j1/2
. (12)

When λ � 1, we can use the asymptotic expansions of the
modified Bessel functions [60,61]

I0(u) ≈ eu

√
2πu

∞∑
k=0

(−1)k

(2u)kk!
Γ (k + 1

2 )

Γ ( 1
2 − k)

. (13)



Download	English	Version:

https://daneshyari.com/en/article/8188733

Download	Persian	Version:

https://daneshyari.com/article/8188733

Daneshyari.com

https://daneshyari.com/en/article/8188733
https://daneshyari.com/article/8188733
https://daneshyari.com/

