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The weakly collective nucleus 94Mo has been considered an excellent example of quadrupole vibrational
mixed-symmetry structure. Algebraic models such as the interacting boson model-2 have been largely
unsuccessful in describing the structure of the 4+

2 state, due to the strong M1 transition between the 4+
2

and 4+
1 states, and the low energy of the 4+

2 state. In this Letter, we show that introducing g-bosons
into the interacting boson model-2 allows for the first time a description of the electromagnetic decay
properties of the low-lying 4+ states in 94Mo within an algebraic model. The hexadecapole degree of
freedom is shown to be important for the description of the collective low-energy structure of nuclei in
this region.

© 2013 Elsevier B.V. All rights reserved.

Collectivity in nuclei, its manifestation over a broad range of
nuclei, and its emergence from underlying microscopic structures,
remains one of the most important topics in contemporary nu-
clear structure physics. A vast number of nuclear models have
emerged that describe collective structures from various degrees
of microscopic origins, or that are entirely based on semi-classical
geometrical approaches. Nuclei near shell closures offer a means
of studying the relation of microscopic nucleon configurations, and
their mixing into collective states. An important degree of freedom
in even–even nuclei is isospin, since the proton–neutron degree of
freedom adds states in addition to those where protons and neu-
trons are indistinguishable in the nuclear wave functions, as well
as isovector transitions between states of differing isospin content.

The interacting boson model (IBM) is an algebraic model that
can be treated as a truncation of the nuclear shell model, and
has been widely and successfully employed for describing col-
lective even–even nuclei [1–3]. In its original form, it truncates
the shell model valence space to L( j2) = 0 or 2 configurations,
formed by two identical nucleons in a given orbital, hence, cou-
pling to s or d-bosons (sd-IBM-1). The sd-IBM-2 version of the
model differentiates between protons and neutrons and predicts
so-called mixed-symmetry (MS) states, which differ from the fully-
symmetric (FS) states of the sd-IBM-1 in F -spin quantum number,
the bosonic analog of isospin for fermions. Since quadrupole inter-
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actions dominate, usually the sd-IBM-2 Hamiltonian is truncated at
the quadrupole level, and excited states can be expressed in terms
of quadrupole-phonon excitations (Q -phonons) of either FS or MS
character. The distinctive feature of MS states are strong M1 tran-
sitions to their symmetric counterparts with the same number of
phonons. A review on MS states can be found in [4].

Q -phonon type excitations have been studied not only within
the IBM, but also within microscopic models such as the quasipar-
ticle phonon model (QPM) [5–8] and the shell model [9,10]. An
excellent laboratory for the study of phonon excitation schemes
in near-spherical nuclei has been found in the N = 52 isotopes,
in particular 94Mo. In comprehensive studies, summarized in [11],
the one-phonon mixed-symmetry 2+ state, as well as most mem-
bers of the two-phonon F = Fmax − 1 MS multiplet have been
observed. E2 and M1 transition strengths were found to be in good
agreement with the γ -soft limit of the sd-IBM-2, however, level
spacings in the γ -soft limit are overpredicted. Energy data suggest
a rather vibrational structure.

Despite the seeming conflicts in energies versus transition
strengths in the structural interpretation of 94Mo, this nucleus
is the best example for FS and MS multi-phonon structures to
date. Nevertheless, one characteristic of 94Mo that cannot be de-
scribed in the sd-IBM-2 without sacrificing the description of the
quadrupole-collective FS and MS states, is the strong M1 transition
between the lowest 4+ states of B(M1;4+

2 → 4+
1 ) = 1.23(20)μ2

N
[11], the strongest known in this mass region. In [11], Fransen
et al. speculated that this strong M1 transition, along with a col-
lective B(E2;4+

2 → 2+
1 ) transition, could be described by including

g-bosons in the IBM. In this work, we include this hexadecapole
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Table 1
Dominant components of wave functions of 4+

1 and 4+
2 states from shell model

calculations for 94Mo [14]. Components are given in percentages, and the configu-
rations listed are the largest components in both wave functions.

Component 4+
1 4+

2

π(g2
9/2)0 × ν(d2

5/2)4 20% 23%

π(p−2
1/2 g4

9/2)0 × ν(d2
5/2)4 10% 12%

π(g2
9/2)4 × ν(d2

5/2)0 13% 21%

π(p−2
1/2 g4

9/2)4 × ν(d2
5/2)0 6% 4%

degree of freedom in the IBM-2, which is typically truncated in
collective models, and show that within the sdg-IBM-2 the strong
4+

2 → 4+
1 transition can be accounted for. This M1 transition is

shown to arise from the exchange of a MS to a FS g-boson con-
figuration, and hence, has its origin in the hexadecapole degree
of freedom. Earlier approaches involving g-bosons in the IBM fo-
cused on deformed regions [12], or involved IBM-1 only, focusing
on transitional regions. Hexadecapole excitations have been much
discussed and were suggested to exist at relatively low energies
[13], but with the richness of the sdg-IBM group chains, the choice
of physically relevant Hamiltonians in the large sdg-IBM model
space poses a serious challenge.

First hints for the potential role of g-bosons in the lowest-lying
4+ states of 94Mo have already been found in shell model calcu-
lations [14] using a 88Sr core. The dominant components in the
wave functions of the 4+

1,2 states, as given in Table 1, were found
to be seniority ν = 2, j = 4 configurations, which by definition are
g-boson configurations within the IBM truncation. The M1 tran-
sition strength between the two lowest 4+ states was calculated
to be 1.79μ2

N . Even though relative phases between proton and
neutron configurations are not given in [14], a recalculation re-
veals that the main proton and neutron configurations have the
same relative sign for the 4+

1 state, but opposite signs for the 4+
2

state, indicative of FS and MS configurations in these states, re-
spectively. Analogous results were obtained in similar calculations
for the 92,94Zr isotopes [15,16]. Hence, the approach of employing
the sdg-IBM-2 within the present work is in accordance with, and
in fact motivated by these shell model calculations.

The sdg-IBM-1 is an algebraic model with states and operators
that are constructed from boson creation and annihilation opera-
tors. The s, d, and g-bosons are defined by L = 0, L = 2, and L = 4,
which have 1, 5, and 9 dimensions respectively. The model there-
fore has 15 dimensions, and the algebraic group that describes
them is U(15). The boson operators are s†, d†

μ , g†
ν , s, dμ , and gν

where μ = −2 . . . 2 and ν = −4 . . . 4. These operators satisfy the
Bose commutation relations, but in order to calculate matrix el-
ements of these operators, the annihilation operators need to be
modified in order to obtain spherical tensors:

s̃ = s d̃μ = (−1)μd−μ g̃ν = (−1)ν g−ν (1)

The distinction between proton and neutron bosons in the sdg-
IBM-2 results in twice as many boson operators, and a 30 di-
mensional algebra. There are symmetries that can be exploited to
simplify the lattice of algebras, but it is first helpful to consider the
transition from the sd-IBM-1 to the sd-IBM-2. Typically, when at-
tempting to describe a nucleus within the sd-IBM-1, the structure
of the nucleus is first compared to the spectra generated by the
three dynamical symmetries: U(5), O(6), and SU(3). These symme-
tries have clear geometric analogues in nuclei: U(5) is vibrational,
O(6) corresponds to a deformed gamma-soft nucleus, and SU(3)
has the structure of a rigid rotor. Due to the lack of clear physical
meaning for the Casimir operators of the dynamical symmetries of
the sdg-IBM-2, we chose to begin with a transitional Hamiltonian

in multipole form, that describes the space spanning the Uπ+ν(5)

and Oπ+ν(6) dynamical symmetries of the sd-IBM-2 [1], conserv-
ing F -spin:

Ĥ = c

(
(1 − ζ )(n̂dπ + n̂dν ) − ζ

4N
(Q̂ π + Q̂ ν) · (Q̂ π + Q̂ ν) + λM̂

)

n̂dρ = d†
ρ · d̃ρ Q̂ ρ = [

s†
ρ d̃ρ

](2) + [
d†
ρ s̃ρ

](2)

M̂ = Fmax(Fmax + 1) − F̂ + F̂ − − F̂ 0 F̂ 0 + F̂ 0 (2)

where Fmax = 1
2 (Nπ +Nν), F̂ + = s†

π s̃ν +d†
π · d̃ν , F̂ − = s†

ν s̃π +d†
ν · d̃π ,

and F̂ 0 = s†
π s̃π − s†

ν s̃ν +d†
π · d̃π −d†

ν · d̃ν . The d-boson number oper-
ator n̂dρ corresponds to vibrational structure, the quadrupole term

is deformation-driving, and the Majorana operator M̂ shifts the en-
ergies of MS states. By adjusting ζ between 0 and 1, the structure
of the level scheme transitions from spherical to deformed. The pa-
rameter c sets the energy scale, and N is the total boson number.

The Hamiltonian used in the sdg-IBM-2 calculations for 94Mo
modifies the vibrational and rotational terms of the Hamiltonian
to include g-boson components:

Ĥ = c

(
(1 − ζ )

(
n̂dπ + n̂dν + α(n̂gπ + n̂gν )

)

− ζ

4N
(Q̂ π + Q̂ ν) · (Q̂ π + Q̂ ν) + λsd M̂sd + λsg M̂sg

)

Q̂ ρ = [
s†
ρ d̃ρ + d†

ρ s̃ρ
](2) + β

[
d†
ρ g̃ρ + g†

ρ d̃ρ

](2) + χd
[
d†
ρ d̃ρ

](2)

+ χg
[

g†
ρ g̃ρ

](2)

n̂dρ = s†
ρ s̃ρ n̂dρ = d†

ρ · d̃ρ n̂gρ = g†
ρ · g̃ρ (3)

The operator M̂sd is identical to the Majorana operator from the
sd-IBM-2, and M̂sg is similar, but with the d-boson operators re-
placed with g-boson operators. The full Majorana operator should
include s, d, and g-boson operators, but these two operators give
more flexibility for adjusting states based on their proton–neutron
d and g-boson symmetry. The parameters χd and χg control the
rigidity of the quadrupole deformation, and will be set to 0 for
the description of 94Mo. This corresponds to the conservation
of d-parity [17], resulting in strict selection rules for M1 transi-
tions, forcing, for example, the 1+

1 to 2+
1 M1 transition strength to

equal 0. The ngπ +ngν terms correspond to the g-boson vibrational
structure, and the parameter α defines the energy of the hexade-
capole boson relative to the quadrupole boson. The parameter β

adjusts the d–g interaction in the quadrupole operator.
The M1 and E2 transition operators are defined to be

T̂ (E2) = eBπ Q̂ π + eBν Q̂ ν

T̂ (M1) =
√

3

4π
(gdπ L̂dπ + gdν L̂dν + ggπ L̂ gπ + ggν L̂ gν) (4)

where ˆLdρ = √
10[d†

ρ d̃ρ ](1) , ˆLgρ = √
60[g†

ρ g̃ρ ](1) , eBρ are effective
boson charges, and gdρ and ggρ are the g-factors for d and g-
bosons respectively. eBπ is a free parameter, setting the scale for E2
transitions, and eBν has been fixed to 0. The proton d and g-boson
g-factors set the scale for M1 transitions, and have been set equal,
in order to further reduce the number of free parameters. The neu-
tron d and g-boson g-factors have both been fixed to 0. This adds
two additional parameters to the calculation, which results in a to-
tal of eight parameters. The consistent-Q formalism [18] is applied,
and the same quadrupole operators as in the Hamiltonian are ap-
plied in the E2 transition operator, hence, explicitly including both
d and g-boson components.
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