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The recent discovery of a non-zero value of the mixing angle 613 has ruled out tri-bimaximal mixing
as the correct lepton mixing pattern generated by some discrete flavor symmetry (barring large next-
to-leading order corrections in concrete models). In this work we assume that neutrinos are Majorana
particles and perform a general scan of all finite discrete groups with order less than 1536 to obtain
their predictions for lepton mixing angles. To our surprise, the scan of over one million groups only

yields 3 interesting groups that give lepton mixing patterns which lie within 3-sigma of the current best
global fit values. A systematic way to categorize such groups and the implications for flavor symmetry

are discussed.
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1. Introduction

The origin of flavor is one of the important questions of beyond
the Standard Model physics. All entries of the lepton mixing ma-
trix, or better known as the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, are of order one, with the exception of Ug3. Com-
pared to the Cabibbo-Kobayashi-Maskawa (CKM) matrix whose
off-diagonal entries are small, the very different form of the PMNS
matrix seems to suggest a different origin of the two matrices.
One popular approach to the flavor puzzle is to invoke (sponta-
neously broken) symmetries to describe the observed patterns. The
leptonic mixing angles can be determined solely from flavor sym-
metry considerations (up to permutations of rows and columns of
the mixing matrix). This is possible if the charged lepton and neu-
trino mass matrices exhibit the misaligned remnant symmetries
under which charged leptons and neutrinos transform as three in-
equivalent singlets, as will be reviewed in the next chapter.

Assuming the remnant symmetries to be part of the original
symmetry group (and not a result of an accidental symmetry)
one can then determine mixing patterns from the structure of
discrete symmetry groups. For review on discrete flavor symme-
tries and their application in model building see [1-3]. For ex-
ample the symmetry group A4 [4-10] and S4 [11-13] can lead
to the tri-bimaximal mixing pattern (TBM) by Harrison, Perkins
and Scott [14,15]. With the latest global fits results [16-18] (see
Table 1) on the non-zero mixing angle 613 measured by DAYA-
BAY [19], RENO [20] and DOUBLE-CHOOZ [21], TBM is ruled out
and one is prompted to rethink the approach to lepton flavor based
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on discrete groups. One possibility is to build models which lead
to TBM on leading order and allow for large next-to-leading or-
der (NLO) corrections. Here the problem usually is that quite often
there are many different NLO corrections, which limits the predic-
tivity of the models. Another approach is to look for new groups
that predict a different type of leptonic mixing pattern i.e. a new
starting point about which models could be built. In this Letter,
we shall follow the second route and therefore perform a scan of
all possible finite discrete groups of the order less than 1536 with
the help of the computer algebra program GAP [22-25]. To our
surprise, only three finite discrete groups can yield the neutrino
mixing angles allowed by the experimental constraints.

This Letter is organized as follows: in Section 2 we will present
the group theoretical procedure to obtain the PMNS matrix from
a finite symmetry group. This section might be skipped by readers
familiar with the methodology. The method of scanning through
all the groups of order less than 1536 and the relevant results are
presented in Section 3 and finally we conclude in Section 4.

2. Leptonic mixing from remnant symmetries

Lepton mixing can be derived from a flavor symmetry break-
ing to remnant symmetries in the charged lepton and neutrino
masses respectively. In concrete models, this is usually achieved
via a spontaneous breaking using some scalar fields charged under
this symmetry into different directions of flavor space. The charge
assignments are chosen such that there are different residual sym-
metries in the charged lepton and neutrino sectors. The misalign-
ment between the two residual symmetries generates the PMNS
matrix [11-13,26-28]. In this method, only the structure of fla-
vor symmetry group and its remnant symmetries are assumed and
we do not consider the breaking mechanism i.e. how the required
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Table 1
Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted from [17]. The errors of the best fit values indicate the one sigma ranges. In
the global fit there are two nearly degenerate minima at sin 63 = 0.4301’:8%(1], see Fig. 1.

Am3, [107° eV?] |am3, | (1073 ev?] sin? 612 [1071] sin 623 [1071] sin? 613 [1072] 8 (]
+.19 +.06 .16 +.22 +.29 +1.2
best fit 7.62+13 2.55706 3.20+18 6.13+22 2.4623 0.8k
30 range 7.12-8.20 231-2.74 2.7-3.7 3.6-6.8 17-33 0-2

vacuum alignment needed to achieve the remnant symmetries is
dynamically realized.
The PMNS matrix is defined as

Upmins = ViV, ()

and can be determined from the unitary matrices V. and V, sat-
isfying

VIMeMIV} = diag(m?, m?, m?)
and

VIM,V, = diag(mi, ma, ms), (2)

where the mass matrices are defined by £ = e’ Mce® + Jv M.
We will now review how certain mixing patterns can be under-
stood as a consequence of mismatched horizontal symmetries act-
ing on the charged lepton and neutrino sectors [11-13,26-28].!
Let us assume for this purpose that there is a (discrete) symmetry
group Gy under which the left-handed lepton doublets L = (v, e)’
transform under a faithful unitary 3-dimensional representation
p:Gy—GL3,C):

L— p(gl, geGy. (3)

The experimental data clearly shows (i) that all lepton masses are
unequal and (ii) there is mixing amongst all three mass eigen-
states. Therefore this symmetry cannot be a symmetry of the en-
tire Lagrangian but it has to be broken to different subgroups G,
and G, (with trivial intersection) in the charged lepton and neu-
trino sectors, respectively. If the fermions transform as

8e € Ge, 8v € Gy, (4)

e — p(ge)e, vV — p(gv)V,

for the symmetry to hold, the mass matrices have to fulfil

P(8e) MM} p(ge)* = Mo M}

and

0(g) Myp(gy) = My. (5)

Choosing G, or G, to be a non-abelian group would lead to a
degenerate mass spectrum, as their representations cannot be de-
composed into three inequivalent 1-dimensional representations
of Ge or G,. This scenario is not compatible with the case of
three distinguished neutrino and charged lepton masses and we
therefore restrict ourselves to the abelian case. We further re-
strict ourselves to the case of Majorana neutrinos, which implies
that there cannot be a complex eigenvalue of the matrices p(g,)
and they therefore satisfy p(gy,)? =1, and we can further choose
det p(gy) = 1. By further requiring three distinguishable Majorana
neutrinos the group G, is restricted to be the Klein group Z; x Z.
To be able to determine (up to permutations of rows and columns)
the mixing matrix from the group structure it is necessary to have
all neutrinos transform as inequivalent singlets of G,. The same
is true for the charged leptons which shows that G, cannot be

1 We here follow the presentation and convention in [26,27].

smaller than Z3. We can now determine the mixing via the uni-
tary matrices 2., £2,, that satisfy

Qgp(ge)ge = p(&e)diag le(gv)gv = p(8v)diag (6)

where 0(g)diag are diagonal unitary matrices. These conditions de-
termine §2¢, 2, up to a diagonal phase matrix K., and permuta-
tion matrices Pe,)

Qe,v - -Qe,er,vPe,v- (7)

It follows from Eq. (5) that up to the ambiguities of the last equa-
tion, V., are given by £2. ,. This can be seen as

QIMeML2} = 21 pTMMLp*2F = pl 2T M ML} P

has to be diagonal (only a diagonal matrix is invariant when
conjugated by an arbitrary phase matrix) and the phasing and
permutation freedom can be used to bring it into the form
diag(mg, m?,, m2), and analogously for £2,,. From these group the-
oretical considerations we can thus determine the PMNS matrix

Upmns = Qgﬂu (8)

up to a permutation of rows and columns. It should not be surpris-
ing that it is not possible to uniquely pin down the mixing matrix,
as it is not possible to predict lepton masses in this approach.

Let us now try to apply this machinery to some interesting
cases. We have seen that the smallest residual symmetry in the
charged lepton sector is given by a G, = (T | T3 = E) = Z3. We use
a basis where the generator is given by

010
p(T)=T3§<0 0 l). (9)
1 00

This matrix will be our standard 3-dimensional representation
of Z3 and the notation T3 will be used throughout this work. It
is diagonalized by

2Lp(T) 2, = diag(1, 0?, w)
and

2.=1 ! 1 12 1 (10)
= = — w w N
’ ! V3\1 » ?

and @ = e'#"/3, Having fixed the basis by choosing the Z3 genera-
tor the way we just did, it is now essentially a question of choosing
generators and studying the predicted mixing matrix. Let us first
look at the case where there is only one generator S of G,, satis-
fying p(§)2 =1 and det p(S) = 1:

1 0 0
p(S):SgE(O -1 0 ) (11)
0 0 -1

Due to the degenerate eigenvalues there is a two-parameter free-
dom in the matrix £2, and it will turn out to be useful in classify-
ing our result later to write it as

21 p(5)2y = diag(—=1,1, 1) with 2, = 2uU136,8)  (12)
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