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A long standing problem in lattice QCD has been the discrepancy between the experimental and
calculated values for the axial charge of the nucleon, g4 = G4(Q?2 = 0). Though finite volume effects have
been shown to be large, it has also been suggested that excited state effects may also play a significant
role in suppressing the value of g4. In this work, we apply a variational method to generate operators
that couple predominantly to the ground state, thus systematically removing excited state contamination
from the extraction of g4. The utility and success of this approach is manifest in the early onset of ground
state saturation and the early onset of a clear plateau in the correlation function ratio proportional to g4.
Through a comparison with results obtained via traditional methods, we show how excited state effects
can suppress g4 by as much as 8% if sources are not properly tuned or source-sink separations are

Keywords:
Lattice QCD
Nucleon axial charge

Variational method insufficiently large.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

In recent years, lattice calculations have taken a tremendous
step towards simulating QCD at the physical point. Algorithmic
and technological developments have allowed simulations to probe
at or near physical quark masses on increasingly larger volumes,
with finer lattice spacings and vastly increased statistics. Calcula-
tions of the ground state spectrum have yielded results consistent
to within a few percent of their physical values with well con-
trolled systematic errors [1,2]. Naturally the next step has been
to strive for this level of precision for the matrix elements of
these states. Despite the remarkable consistency between lattice
and experimental data for the pion form factor F;(Q?), a com-
plete description of other hadronic states, particularly the nucleon,
has proven to be remarkably challenging [3,4].

The most notable shortfall is for the nucleon axial charge, g4 =
Ga(Q2 =0). In principle g4 should be relatively simple to calcu-
late. Being an iso-vector quantity, disconnected loop contributions
are absent and as we have direct access to G4(0), we circumvent
the need for extrapolations in Q2. Unfortunately, the lattice values
for g4 to date have been consistently lower than the experimental
value by as much as 10-15% [5]. In an effort to account for these
discrepancies, several studies have carefully examined the system-
atic errors present in the calculation [6-19]. In this Letter we will
focus on the role of excited state effects.
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Recently there has been an increased effort to understand and
reduce the impact of excited states on form factor calculations. In
computing these quantities, it is well understood that to ensure ex-
cited state contributions to the correlation function are sufficiently
suppressed, one needs large Euclidean time separations between
operators. To choose a suitable time separation one should iden-
tify the time slices where the correlation functions take on their
asymptotic form. For the two commonly used sequential source
techniques, this is a relatively simple procedure for the fixed cur-
rent method. One simply chooses a current insertion time, tc, once
the asymptotic behaviour is observed in the two-point correlator.
Results are extracted from the data once the asymptotic behaviour
is observed in the three-point correlator.

For the fixed sink method, one requires knowledge of the
asymptotic behaviour of the three-point correlator a priori. Unfor-
tunately, the temptation to use earlier sink times in order to obtain
more precise results is inescapable. These results can suffer from
excited state contaminations, even if a plateau is observed with tc.
In Refs. [10,16], it was found that for certain matrix elements, e.g.
(x), the source-sink separations often used in the literature were
not sufficiently large to suppress excited state effects. Nonetheless,
as we move ever closer to the physical point one is naturally forced
to choose earlier sink times as the signal degrades much quicker.

To counter this issue, new techniques are being devised to try
and control the sub-leading terms to the three point correlator. The
use of the summation method [18,20] has shown improvement
upon the conventional approach, but the underlying excited states
contributions are still present. It is not hard to imagine situations
where these still impact significantly and alter the final result.
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In this Letter we take a somewhat different approach. Rather
than reduce the impact of excited states through Euclidean time
evolution, we seek to separate them out from the ground state at
the source and sink. Drawing upon the techniques developed for
excited state spectroscopy calculations, we will use the variational
approach to construct interpolating fields that couple with individ-
ual energy eigenstates and use these to isolate the desired matrix
elements [21,22]. An analogous approach has been presented in
[23,24] for the study of B* — Bm transitions and in [25] for the
study of the axial charges of nucleon excited states. Here we apply
it specifically to g4 to remove excited state contributions.

This Letter is organized as follows. In Section 2 we will examine
the variational method in the context of excited state spectroscopy
and then outline how this method can be applied to the calcu-
lation of hadronic matrix elements. Section 3 outlines the details
of this calculation. In Section 4 we present our results and com-
pare our variational method with the traditional, single-operator
approach to the calculation of g4. Section 5 is a cost-benefit dis-
cussion for the variational method. Finally we provide our conclud-
ing remarks in Section 6.

2. Variational method for matrix elements

The ‘variational method’ [26,27] is a well established approach
for determining the excited state hadron spectrum. It is based on
the creation of a matrix of correlation functions in which different
superpositions of excited state contributions are linearly combined
to isolate the energy eigenstates. A diversity of excited state super-
positions is central to the success of this method.

Starting from a basis of operators {x;(x) |i=1,..., N}, we con-
struct a correlation matrix of two-point correlation functions,
Gij(B;t; 1) =y _ e P*tr(I(2xi(x) %;(0)12)). (1)

X

Due to the discrete nature of the lattice, we can decompose
these correlation functions into a discrete sum over energy eigen-
states,

Gij(p.t; ) =Y e EPize(5) 2% (p) tr(M>, (2)

2Eq(P)

where the parameters Z¥(p) are the coupling strengths of the in-
terpolators x;(x) with the energy eigenstate of mass my, and I”
projects out the desired parity. We choose new operators ¢“(x) to
be linear combinations

PUO = vix(, X =Y ulx;), (3)
i J

with a suitable choice of coefficients vf‘ and u‘;‘, such that these
interpolators couple to a single energy eigenstate,

My
———u(p,s). (4)
Eq(p)
From Eqgs. (2) and (4) we find that the necessary values for v{ and
u‘]).‘ are the solutions of the following eigenvalue equations

(219P (0|, p, s) = 8P 2o (P)
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[(G.t0) ' G(h. to + AD)],u% (B) = c*ul (p). (6)

where the eigenvalue c® = e M AL,
It is important to note that both (5) and (6) are evaluated for
a given momentum p and so the diagonalisation condition is only

satisfied when we project with the relevant coefficients as follows:

vE(B)Gij (B, & Duf (B) o 8. 7)
Thus the two-point correlation function for the state |, p) is
G*(p,t; I') = v{ (B)Gij(, t; Iuf (p). (8)
We can extract the mass mg from G¥(p = 0,t) in the standard
way.

To understand how we can utilise the variational method for
use in form factor calculations, we must first identify the terms
present in the three-point correlation function,

Gij(ﬁ,s ﬁ; ty. t1: F/) _ Z e_if’/'zze“(f’/—f’)'&l

X1.%

x tr(I"(2|xi(x2)Ox1) X (0)[$2)),  (9)
where O(x) is the current operator to be inserted. Sandwiching
the current between two complete sets of states we end up with

three terms, the vertex amplitude, (8, p’,s’|O(0)|«, p, s), and the
coupling terms (£2|x;(0)|B, p’, s") and (a, p, s|X;(0)|£2),
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The coupling parameters take the same form as they did in the cal-
culation of the two-point correlator with two key differences. The
inclusion of a current means that the initial and final momenta
need not be the same. Furthermore, there also exists the possibil-
ity that the initial and final energy eigenstates are not the same.
That is, the current can induce a transition between states. For this
calculation the necessary expression is

G¥(p', pita, t1; I') = v (B') Gy (B, ps ta, tr; T )uf (B). (1)

To isolate the matrix element from the three-point function, we
construct a ratio in the standard way. In this work we shall use
the ratio defined in [28]. For the state « the necessary ratio is

Ra(f)/,ﬁ; r, 1—.)

_[GH(P . pita. t1: TNGY (P, P ta. tr: )
B GY(p, to; IGY(P, ta; T) ’

(12)

Key to this approach is the utilisation of a basis of operators in
which there is diversity in the overlap with various excited states.
As there are a limited number of local bilinear operators for a
given JPC, a great deal of work has been made by various groups
in increasing the number of available operators. Here we choose to
use fermion source and sink smearing as a method of extending
our operator basis, as outlined in [29,30].

3. Calculation details

For this calculation we make use of the PACS-CS (2 + 1)-flavour
dynamical-QCD gauge field configurations [31] made available
through the ILDG [32]. These configurations are generated using
a non-perturbatively O(a)-improved Wilson fermion action and
Iwasaki gauge action. The value g = 1.90 results in a lattice spac-
ing a = 0.091 fm, determined via the static quark potential. With
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