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The first four cumulants and ratios of cumulants of net-proton multiplicity distributions are calculated
within the hadron resonance gas model. Quantum statistics, resonance decay contributions and the van
der Waals excluded volume corrections are taken into account in the model calculations. The corrections
due to quantum statistics are small even at the lower RHIC energies. The van der Waals excluded volume
procedure leads to a larger suppression of the particle number fluctuations, especially for higher order
cumulants. The STAR most central data on the various order cumulants and moment products at the
higher RHIC energies are generally below the Poisson expectations and better described by the van der
Waals gas with a hadron radius around r = 0.3 fm.
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1. Introduction

One of the major goals of the heavy ion programs at CERN
and BNL is to explore the QCD phase diagram related to decon-
finement and chiral symmetry restoration. It was argued that, at
high energies, the history of the system, in particular the transi-
tion from a system with quarks and gluons degrees of freedom to
a system where the relevant degrees of freedom are hadrons, may
be reflected in fluctuations of conserved charges, specially in their
higher cumulants [1–3]. Large fluctuations of baryon number and
electric charge as well as a nonmonotonic behavior of these fluctu-
ations as a function of the collision energy in heavy ion collisions
have been proposed as a signature for the QCD critical endpoint
[1,4,5].

Particle yields of the physical system created at the time of
freeze-out in heavy ion collisions from SIS up to LHC energies ex-
hibit thermal characteristics and are well described by the hadron
resonance gas (HRG) model [6,7]. Since the sensitivity to critical
dynamics grows with the increasing order, the values of higher or-
der cumulants of charge fluctuations can differ significantly from
the results of HRG along the freeze-out curve even if lower-order
cumulants agree [2]. The HRG model results on cumulants of
charge fluctuations can serve as a theoretical baseline for the anal-
ysis of heavy ion collisions [8].

First data on cumulants of net-proton multiplicity distributions
were recently obtained by the STAR Collaboration in Au + Au colli-
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sions at several collision energies [9–11]. Although the basic prop-
erties of the measured fluctuations and their ratios are consistent
with HRG model expectations [2,12], a more detailed comparison
reveals that deviations cannot be excluded [11,12]. Previous HRG
model analyses on this topic are for the net-baryon number [2] or
within the Boltzmann approximation [12].

In this Letter the first four cumulants of net-proton multi-
plicity distributions are calculated in the HRG model. The dif-
ferent cumulants and ratios of cumulants are evaluated on the
phenomenologically determined freeze-out curve in the temper-
ature, baryon chemical potential plane. Quantum statistics, reso-
nance decay contributions and the van der Waals (VWD) excluded
volume corrections are included in the model calculations. En-
ergy dependence of ratios of cumulants of net-proton distribu-
tions and the centrality dependence of the first four cumulants
are computed in the HRG model and compared to results ob-
tained by the STAR Collaboration in Au + Au collisions at

√
sN N =

7.7,11.5,19.6,27,39,62.4, and 200 GeV.

2. Higher moments of net-proton multiplicity distributions in
the HRG model

2.1. Ideal hadron gas

In the HRG model the partition function contains all relevant
degrees of freedom of the confined, strongly interacting matter and
implicitly includes interactions that result in resonance formation.
For heavy ion collisions at high energies and a study of fluctuations
within a narrow phase space acceptance window, the equilibrated
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medium at chemical freeze-out seems to be well described by a
grand canonical (GC) ensemble. The logarithm of the GC partition
function of a hadron resonance gas can be written as a sum of
partition functions ln Zi of all hadrons and resonances

ln Z(T , V ,μ1, . . . ,μh) =
h∑

i=1

ln Zi(T , V ,μi), (1)

where h is the number of different particle species, T is the tem-
perature, V is the system volume, and

ln Zi(T , V ,μi) = V gi

2π2

∞∫
0

±p2 dp ln
[
1 ± exp

(−(Ei − μi)/T
)]

,

(2)

where gi is the spin degeneracy factor, Ei =
√

p2 + m2
i is the single

particle energy, and mi is the mass of a particle i. For a parti-
cle i of baryon number Bi , strangeness Si , and electric charge Q i ,
the chemical potential μi = BiμB + SiμS + Q iμQ . The upper and
lower signs are for fermions and bosons, respectively.

The mean number of primary particles i is calculated according
to [13]:

C1 = M = 〈Ni〉 =
[(

T
∂

∂μi

)
ln Zi

]
T ,V

= V gi

2π2

∞∫
0

p2 dp ni, (3)

where

ni = 1

exp[(Ei − μi)/T ] ± 1
.

The variance and higher order cumulants of primary particles i are
obtained from further derivatives of ln Zi with respect to the cor-
responding chemical potential,

C2 = σ 2 = 〈
(�Ni)

2〉 = [(
T

∂

∂μi

)2

ln Zi

]
T ,V

= V gi

2π2

∞∫
0

p2 dp ni(1 ∓ ni), (4)

C3 = 〈
(�Ni)

3〉 = [(
T

∂

∂μi

)3

ln Zi

]
T ,V

= V gi

2π2

∞∫
0

p2 dp ni
(
1 ∓ 3ni + 2n2

i

)
, (5)

and

C4 = 〈
(�Ni)

4〉 − 3
〈
(�Ni)

2〉2 =
[(

T
∂

∂μi

)4

ln Zi

]
T ,V

= V gi

2π2

∞∫
0

p2 dp ni
(
1 ∓ 7ni + 12n2

i ∓ 6n3
i

)
, (6)

where �Ni = Ni − 〈Ni〉. Skewness (S) and kurtosis (κ ) are gener-
ally introduced to characterize the shape of statistical distributions,

S ≡ 〈(�N)3〉
σ 3

, κ ≡ 〈(�N)4〉
σ 4

− 3. (7)

2.2. Effect of resonance decays

In the HRG model, after thermal “production”, resonances and
heavier particles are allowed to decay, therefore contributing to the
final yields of lighter mesons and baryons. The ensemble averaged
final particle yields, after resonance decays, equal to [14,15]

〈Ni〉 = 〈
N∗

i

〉 + ∑
R

〈NR〉〈ni〉R , (8)

where N∗
i and NR denote the primordial yields of particles of

species i and resonances R , the summation
∑

R runs over all types
of resonances, and 〈ni〉R ≡ ∑

r bR
r nR

i,r is the average over resonance

decay channels. The parameter bR
r is the branching ratio of the r-

th branch of resonance R decay, and nR
i,r is the number of particles

of species i produced in the decay of resonance R via the decay
mode r.

Resonance decay has a probabilistic character. This itself causes
the particle number fluctuations in the final state. The two particle
correlations after resonance decays can be calculated as [14–16]

〈�Ni�N j〉 = 〈
�N∗

i �N∗
j

〉 + ∑
R

〈NR〉〈�ni�n j〉R

+
∑

R

〈
�N∗

i �NR
〉〈n j〉R +

∑
R

〈
�N∗

j �NR
〉〈ni〉R

+
∑
R,R ′

〈�NR�NR ′ 〉〈ni〉R〈n j〉R ′ (9)

where 〈�ni�n j〉R ≡ ∑
r bR

r nR
i,rnR

j,r −〈ni〉R〈n j〉R . For the ideal hadron
gas (HG), the correlations between different primary particle
species are absent in the GCE. The three and four particle corre-
lations after resonance decays can be obtained similarly from the
following generating function [15]:

G ≡
∏

R

(∑
r

bR
r

∏
i

λ
nR

i.r
i

)NR

, (10)

where λi are auxiliary parameters that are set to one in the final
formulas, and the results are listed in Appendix A.

2.3. Freeze-out conditions in heavy ion collisions

There is a phenomenological relation between the collision en-
ergy and the corresponding thermal parameters, which defines the
so called chemical freeze-out line in the temperature and baryon
chemical potential plane [17]. Following Ref. [17], the set of model
parameters at different collision energies can be determined. With
increasing colliding energy, the system temperature increases. This
is accompanied by a drop in baryon chemical potential, which can
be parameterized by the following function [17]:

μB(
√

sN N ) = 1.308 GeV/
(
1 + 0.273 GeV−1√sN N

)
, (11)

where
√

sN N is the c.m. energy in units of GeV. The chemi-
cal freeze-out temperature is determined by 〈E〉/〈N〉 ≈ 1.08 GeV
[18]. Other model parameters, the chemical potentials related to
strangeness and isospin, are determined by strangeness conserva-
tion and by total charge over total baryon (Q /B = 0.4), respec-
tively. The strangeness saturation factor γs has been set to 1.

The thermal model program THERMUS [19] is used in this anal-
ysis. Quantum statistics and the finite width of resonances have
been taken into account. We first take hadrons in the model as an
ideal HG of point-like particles, and include the repulsive interac-
tion of hadrons and resonances by implementing a hard core re-
pulsion of the VDW-type in the following subsection. The standard
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