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We present a calculation of the generalized parton distributions (GPDs) of the photon when the helicity
of the initial photon is different from the final photon. We calculate the GPDs using overlaps of photon
light-front wave functions (LFWFs) at leading order in electromagnetic coupling α and zeroth order in
the strong coupling αs , when the momentum transfer is purely in the transverse direction. These involve
a contribution of orbital angular momentum of two units in the LFWFs. We express these GPDs in the
impact parameter space.
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1. Introduction

Generalized parton distributions (GPDs) of the nucleon are uni-
fied objects giving a wide range of information on nuclear struc-
ture and spin [1]. These are non-perturbative objects appearing
in the factorized amplitude of exclusive processes like deeply vir-
tual Compton scattering (DVCS) and meson production; and can be
expressed as an off-forward matrix element of light-cone bilocal
operators. In [2] the amplitude of the DVCS process on a photon
target γ ∗(Q )γ → γ γ at high Q 2 is written in terms of photon
GPDs. These photon GPDs were calculated at leading order in elec-
tromagnetic coupling α and zeroth order in the strong coupling
αs and upto leading logs; in the kinematical limit that there is
no momentum transfer in the transverse direction. In fact the par-
ton content of the photon is known to play an important role in
high energy scattering processes. The parton distributions of the
photon are now well understood both theoretically and experimen-
tally [3]. On the other hand, the GPDs and generalized distribution
amplitudes (GDAs) of the photon [4] are much less investigated
objects. In a couple of recent works [5,6], we extended the cal-
culation of photon GPDs in the more general kinematics when
the momentum transfer has both transverse and longitudinal com-
ponents. We have developed an overlap representation using the
light-front wave function of the photon. We also showed that the
impact parameter space interpretation of the photon GPDs give a
3D position space description of them. In another recent work [7],
GPDs of the photon have been used to investigate analyticity prop-
erties of DVCS amplitudes and related sum rules for the GPDs.

As we know, in the DVCS process e P → eγ P , the helicity of
the proton may or may not flip due to the scattering. When the
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proton helicity is flipped, the DVCS amplitude is parametrized in
terms of the GPD E [1]. This flip requires non-zero orbital angular
momentum in the overlapping light-front wave functions (LFWFs)
and is not possible unless there is non-zero momentum transfer
in the transverse direction. For a transversely polarized nucleon,
this gives a distortion of the parton distributions in the transverse
position or impact parameter space [8]. In two previous articles,
we calculated the impact parameter space representations of the
photon GPDs when the helicity of the photon is not flipped. In
this work, we calculate the GPDs that involve helicity flip of the
photon and represent them in impact parameter space. Like the
proton, these involve overlaps of LFWFs of the photon, with non-
zero orbital angular momentum (OAM). The corresponding parton
distributions in the impact parameter space show distortions re-
lated to the orbital angular momentum of the LFWFs.

2. GPDs of the photon with helicity flip

The GPDs of the photon can be expressed as the following off-
forward matrix elements [5,6]

F q =
∫

dy−

8π
e

−i P+ y−
2

〈
γ

(
P ′), λ′∣∣ψ̄(0)γ +ψ

(
y−)∣∣γ (P ), λ

〉
, (1)

F̃ q =
∫

dy−

8π
e

−i P+ y−
2

〈
γ

(
P ′), λ′∣∣ψ̄(0)γ +γ5ψ

(
y−)∣∣γ (P ), λ

〉
(2)

here |γ (P ), λ〉 is the (real) photon target state of momentum P
and helicity λ. We work in the light-front gauge A+ = 0. We use
the standard LF coordinates P± = P 0 ± P 3, y± = y0 ± y3. Since

the target photon is on-shell, P+ P− − P⊥2 = 0, the momenta of
the initial and final photon in the most general case of momentum
transfer are given by:

P = (
P+,0⊥,0

)
, (3)
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P ′ =
(

(1 − ζ )P+,−�⊥,
�⊥2

(1 − ζ )P+

)
. (4)

The four-momentum transfer from the target is

� = P − P ′ =
(

ζ P+,�⊥,
t + �⊥2

ζ P+

)
, (5)

where t = �2 and ζ is called the skewness variable. In addition,
overall energy-momentum conservation requires �− = P− − P ′− ,
which connects �⊥2

, ζ , and t according to

(1 − ζ )t = −�⊥2
. (6)

In order to calculate the above matrix element, we use the Fock
space expansion of the photon state, which can be written as [5]

∣∣γ (P ), λ
〉 = √

N

[
a†(P , λ)|0〉

+
∑
σ1,σ2

∫
{dk1}

∫
{dk2}

√
2(2π)3 P+δ3(P − k1 − k2)

× φ2(k1,k2,σ1,σ2)b
†(k1,σ1)d

†(k2,σ2)|0〉
]

(7)

where
√

N is the normalization of the state; which in our calcu-
lation we can take as unity as any correction to it contributes at
higher order in α. {dk} = ∫ dk+d2k⊥√

2(2π)3k+ , φ2 is the two-particle (qq̄)

light-front wave function (LFWF) and σ1 and σ2 are the helicities
of the quark and antiquark. The wave function can be expressed in

terms of Jacobi momenta xi = k+
i

P+ and q⊥
i = k⊥

i − xi P⊥ . These obey

the relations
∑

i xi = 1,
∑

i q⊥
i = 0. The Lorentz boost invariant

two-particle LFWFs are given by ψ2(xi,q⊥
i ) = φ2

√
P+ . ψ2(xi,q⊥

i )

can be calculated order by order in perturbation theory. The two-
particle LFWFs for the photon are given by

ψλ
2s1,s2

(
x,q⊥) = 1

m2 − m2+(q⊥)
2

x(1−x)

eeq√
2(2π)3

χ
†
s1

[
(σ⊥ · q⊥)

x
σ⊥

− σ⊥ (σ⊥ · q⊥)

1 − x
− i

m

x(1 − x)
σ⊥

]
χ−s2ε

⊥∗
λ (8)

where m is the mass of q(q̄). λ is the helicity of the photon and
s1, s2 are the helicities of the q and q̄ respectively. We have used
the two-component form of light-cone field theory [9], namely the
component A− of the photon field is constrained in the gauge
A+ = 0 and can be eliminated from the theory. So one has only
the transverse components of the photon field A⊥ . Likewise, the
‘bad’ component of the fermion field ψ(−) is eliminated using con-
straint equation and ψ(+) is written in terms of two-component
spinors, χs [9].

The GPDs can be written in terms of the overlaps of the LFWFs
as follows:

F q =
∫

d2 q⊥ dx1 δ(x − x1)ψ
∗λ′
2

(
x1,q⊥ − (1 − x1)�

⊥)
ψλ

2

(
x1,q⊥)

−
∫

d2 q⊥ dx1 δ(1 + x − x1)ψ
∗λ′
2

(
x1,q⊥ + x1�

⊥)
× ψλ

2

(
x1,q⊥)

. (9)

We calculate the photon GPDs using overlaps of light-front
wave functions. We take the momentum transfer to be purely in
the transverse direction, unlike [2], where the momentum transfer
was taken purely in the light-cone (plus) direction. GPDs in this

case can be expressed in terms of diagonal (particle number con-
serving) overlaps of LFWFs. When there is non-zero momentum
transfer in the longitudinal direction, there are off-diagonal parti-
cle number changing overlaps as well, similar to the proton GPDs
[10].

The transverse polarization vector of the photon can be written
as:

ε⊥± = 1√
2
(∓1,−i). (10)

We extract the GPD that involves a helicity flip of the tar-
get photon from the non-vanishing coefficient of the combination
(ε1+1ε

1∗−1 + ε2+1ε
2∗−1). The corresponding GPD without a helicity flip

of the photon contains a leading logarithmic term at leading order
in α and zeroth order in strong coupling constant and has been
discussed in two previous articles [5,6]. The GPD with helicity flip
is given by:

E1 = αe2
q

2π2
x(1 − x)

[
I1 − (1 − x)I2

]
. (11)

The integrals I1 and I2 are given by:

I1 =
∫

d2q⊥ ((q1)2 − (q2)2)

D1 D2
, I2 =

∫
d2q⊥ (q1�1 − q2�2)

D1 D2
,

where q1 and q2 are the x and y components of q⊥ and �1 and
�2 are the x and y components of �⊥ respectively. The denomi-
nators are given by:

D1 = (
q⊥)2 − m2x(1 − x) + m2,

D2 = (
q⊥)2 + (1 − x)2(�⊥)2 − 2q⊥ · �⊥(1 − x)

− m2x(1 − x) + m2. (12)

In order to simplify the above expression we use the formula
[11]

1

Ak
= 1

Γ (k)

∞∫
0

αk−1e−αA dα. (13)

The integrals can be written in the form:

I1 = ((
�1)2 − (

�2)2)
π(1 − x)2

1∫
0

dq
(1 − q)2

B(q)
,

I2 = ((
�1)2 − (

�2)2)
π(1 − x)

1∫
0

dq
(1 − q)

B(q)
,

where

B(q) = m2(1 − x(1 − x)
) + q(1 − q)(1 − x)2(�⊥)2

. (14)

So we have

E1 = αe2
q

2π
x(1 − x)3((�1)2 − (

�2)2)

×
[ 1∫

0

dq

B(q)

(
(1 − q)2 − (1 − q)

)]
. (15)

The above has the expected quadrupole structure coming from

((�1)
2 − (�2)

2
). As the photon is a spin one particle, in order to

flip its helicity, the overlapping light-front wave functions should
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