Physics Letters B 722 (2013) 151-156

www.elsevier.com/locate/physletb

Contents lists available at SciVerse ScienceDirect

Physics Letters B

PHYSICS LETTERS B

A new Monte Carlo study of evolution equation with coherence

M. Slawinska *, S. Jadach, K. Kutak

Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakéw, Poland

ARTICLE INFO ABSTRACT

Article history:

Received 8 February 2013

Received in revised form 7 April 2013
Accepted 9 April 2013

Available online 11 April 2013

Editor: A. Ringwald
plots.

We solve CCFM evolution equation numerically using the CohRad program based on Monte Carlo
methods. We discuss the effects of removing soft emissions and non-Sudakov form factor by comparing
the obtained distributions as functions of accumulated transverse momenta or fractions of proton’s
longitudinal momenta. We also compare the solution of the CCFM with the DGLAP equation in the
gluonic channel. Finally, we analyze the infrared behaviour of solutions using the so-called diffusion
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1. Introduction

The Large Hadron Collider opened up the possibility to scan
parton densities over a wide domain of partons kinematics. This
allows for detailed studies of various theoretically interesting and
phenomenologically relevant dynamical effects taking place during
partons evolution, such as: coherence [1], saturation [2] or both
[3-5]. In the present work we are in particular interested in the
coherence effects in the initial state gluon cascade which is mod-
elled by CCFM [1,6] evolution equation. These effects are taken into
account by summing up dominant contribution in angular ordered
regions of phase space. Therefore, in comparison with DGLAP [7]
equation, CCFM includes some of the interference effects that are
subleading from the point of view of approximation to leading-
order in the ordering in the hard scales as lnq%/u2 where qr is
the transverse momentum of a t-channel gluon. Because of this
type of ordering, the CCFM equation is applicable also in the do-
main of low x and can be viewed as a bridge between low x and
large x physics. The CCFM equation, due to the coherence effects
included, provides parton distribution function (PDF) not only at
a given fraction of proton longitudinal momentum x and trans-
verse momentum accumulated in the gluonic ladder, but accounts
also for additional argument p, related to the maximal angle of
gluon emissions. Hence, it allows for matching a PDF with a hard
process matrix element given the scale of the last emission. The
last feature makes it particularly interesting for extextension of
the BFKL [8] approach. The classical CCFM equation is linear and
predicts unlimited growth of parton densities at small x. It can,
however, be extended in order to account for saturation by extend-
ing it by a nonlinear term [3,9] or impose absorptive boundary
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conditions [10,11]. The CCFM equation has been already studied
theoretically in some limiting cases i.e. in the low x limit [10,12-
14] and within Monte Carlo formulation [15-18]. It has been also
used in phenomenological applications [19-22]. However, the open
issues concerning the CCFM are numerous to mention here just
the proper form of the initial conditions, the details of violation of
unitarity, the role of the soft emissions in the low x limit. Also the
efficient algorithm for solving it together with evolution of quark
densities is still an open problem. In the present study we reinves-
tigate systematically aspects of the CCFM equation using the Monte
Carlo Markov chain approach focusing on the role played by the
non-Sudakov form factor and the soft parts of the splitting func-
tion. The understanding of the effects coming from both parts of
the splitting functions is important for investigations of unitarity
violation effects in evolution of partons [5] since the nonlineari-
ties affect the soft emissions. Such investigation is possible since
the Monte Carlo numerical integration we use [23] allows for easy
handling of singular integrals and therefore for taking into account
effects from the full splitting function i.e. soft and hard emissions
and corresponding form factors. The second reason linked to the
use of Markov chain Monte Carlo is to provide a new scheme for
performing numerically efficient parton shower based on a forward
evolution and extend it in the future to account for a nonlinear
term allowing for saturation of gluons as well as for quarks.

The Letter is organized as follows. In Section 2 we introduce an
iterative formulation of the CCFM equation suitable for the Markov
Chain implementation. In Section 3 we present the Monte Carlo al-
gorithm we apply to solve the CCFM equation using the CohRad
program. In the Section 4 we analyze properties of the CCFM
equation i.e. the effect of neglecting the Sudakov form factor and
soft real emissions, and we compare the CCFM to angular ordered
DGLAP cascade. Finally we perform the analysis of population of
different regions of phase space focusing on the diffusion aspects
of the considered equations.
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Fig. 1. Notation used in the text.
2. CCFM evolution equation

We use notation as in Fig. 1: p; and q; denote four-momenta of
real and virtual gluons, respectively, and x;11 = z;+1x; are fractions
of longitudinal momenta of the gluon initiating the cascades. If
z~0, a large momentum fraction has been carried out by a real
emitted gluon (hard emission), while z~ 1 corresponds to a soft
emission. 2-vectors of transverse momenta of the emitted gluons
are denoted by p;r and transverse momenta accumulated on the
emitting line by qit = |qor —Z', 1 Pj7l. It is also convenient to use
rescaled transverse momenta p; = p’T , with their modulus being
related to angles of emissions: p; = |p,| = fﬁTzi ~ E;6;.

The CCFM equation imposes angular ordering in the real emis-
sions, that can be expressed either using angles: pij+q > z;p; or
rapidities of the emitted gluons: In 5% =10 < Nit1.

In the following we present solution of the CCFM equation for
the unintegrated gluon density in the iterative form:

A(x,qt, p)
= A(X0, qor» Po)As(P, Po)d(x — x0)3(qT — qoy)
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convenient for a Markov chain Monte Carlo implementation. The
©(p; — zi—1Pi—1) functions impose angular ordering of emissions.
The scale p related to rapidity position of the hard process will be
defined more precisely in the following. The variable pg =1 GeV
plays the role of the minimal scale and the infrared cutoff on
transverse momenta, p;T > po. The initial transverse momentum
of a gluon coming from a proton is denoted by gor. In the above

3 asNe [ 1 Ans(P,z,qr)
Pgg(z,p,qr) = T 12 Z
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is the CCFM splitting function. Its form is similar to the DGLAP [7]
splitting:
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yet does not include terms non-singular in z — 0. The non-
Sudakov form factor Ans(p, z, qr) reads:
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The particular form of the non-Sudakov form factor we study here
and which allows the form factor to be larger than unity was mo-
tivated by the investigations in [11]. This formulation which we
wanted to reproduce in Monte Carlo neglects kinematical con-
straint effects and leads to fast growth of gluon density towards
small values of qr. Studies taking into account kinematical con-
straint effects we postpone for future investigations. In both Ap;
and A as well as in the splitting function we kept o constant,
os = 0.2, for simplicity at this stage. In the future we plan to
use coupling constant as suggested by NLO BFKL results [24]. This
form factor enters the CCFM equation from resummation of vir-
tual emissions that are harder than either of the emitting lines. It
regulates z — 0 singularity of the splitting function. A detailed dis-
cussion on the physical interpretation of the region of integration
can be found for instance in Ref. [10].

The Sudakov form factor is given by

1—&(pi)
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It can be interpreted as resummed soft virtual emissions on the
emitter line. With po being the minimal allowed transverse mo-
mentum! the soft (IR) cutoff in CCFM &(p;) = po/(Pixo) is evolu-
tion scale dependent. At the beginning of the evolution (p; >~ po)
only hard, z; — 0, emissions are allowed. In DGLAP this cutoff is
constant, £(p;) =&.

Finally let us also mention that the distribution A in Eq. (1) is
related to the gluon density g(x) through the relation

d2
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3. Monte Carlo algorithm

We implemented CCFM evolution equation (1) in CohRad as
a Markov chain in (1, x;). Due to the similarities between the

1 We set po =1 GeV, see below for more discussion.
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